

4582 N. 1ST AVENUE, SUITE 120, TUCSON, ARIZONA 85718 (520) 795-7255 FAX (520) 795-6747

MEMORANDUM

TO:

Paul Baughman, EIT

Town of Marana

FROM:

Tanya Grahn >

DATE:

August 29, 2006

SUBJECT:

The Pines Phase I Soils Report, ENG0511-015

Presidio Engineering Job No. 104023-03-0500

COPIES TO: Gerrie Gray, Standard Pacific Homes w/ attachment

John D. Wood, P.E., Presidio Engineering w/o attachment

In response to your July 14, 2006 memo regarding the above referenced project, please find attached two copies Terracon's August 21, 2006, Addendum 7 to the Geotechnical Engineering Report for review and approval.

Let us know if you have any questions or require additional information.

Attachment

355 South Euclid, Suite 107

Tucson, Arizona 85719 Phone 520.770.1789 Fax 520.792.2539

www.terracon.com

August 21, 2006

Standard Pacific of Tucson 4578 North First Avenue Tucson, Arizona 85718-5748

Attn: Mr. E

Mr. Bob Storie

RE:

Addendum 7 to Geotechnical Engineering Report Phase I Residential Development at the Pines At the Pines Golf Course North of Cortaro Road and West of Interstate 10 Marana, Arizona

Terracon Project No. 63045225, Addendum 7

Terracon has completed the geotechnical engineering report for the Residential Development at the Pines (Terracon project 63045525 dated December 8, 2004). We have been contacted by John Wood at Presidio Engineering to provide additional information concerning Continental Links Drive for this project. We have previously provided information concerning Continental Links Drive in Addendum 2, dated June 6, 2005.

Based on revised anticipated traffic volumes for Continental Links Drive, considering traffic generated from The Pines Phase I, The Pines Phase II, and the golf course, the anticipated traffic volume will be 3,750 ADT. Revised traffic volumes were provided by Scott Beck of Kimley-Horn associates.

The site soils have a correlated R-value of 49 which equates to a resilient modulus value M_r of 23,385 psi using a seasonal variation factor of 1.7 for Marana. Based on an ADT of 3,750 we estimate 1,112,246 design ESAL's. Using this data and ADOT/AASHTO design procedures a required structural number of 2.20 is calculated. A minimum pavement section consisting of 3.5 inches of asphalt (PAG Mix No. 2) over 6 inches of aggregate base course has a structural number of 2.20 and is recommended for design. Alternatively, a pavement section of 3.0 inches of asphalt over 8 inches of aggregate base course has a structural number of 2.20 and may also be used.

Materials and construction of pavements for the project should be in accordance with the requirements and specifications of the Pima County/City of Tucson Standard Specifications for Public Improvements.

Phase I Residential Development at the Pines Pines Golf Course Terracon Project No. 63045225, Addendum 7

Please see the attached calculation sheets for our assumed traffic distribution and information concerning the parameters used to design the pavement section.

All other recommendations previously provided remain valid. If you have any questions regarding this letter please contact us.

Sincerely,

TERRACON

OU

Bryan W. Reed, P.E. Project Manager

Oleg B. Lysyj, P.E. Geotechnical Services Manager

Copies:

Addressee (3)

Presidio Engineering (1) Attn: John Wood

Design Traffic Analysis

♦ All Truck Factors are 18-kip equivalents per vehicle per ADOT

. Înifial Data

PROJECT DATA

Project name: The Pines
Location: Marana, Arizona
TCW Project No. 63045225

STREET DATA

Street Name Continental Links Drive - Revision 1

Design Average Daily Traffic (ADT)

3,750

Design Period (years)

20

Number of Traffic Lanes (2, 4 or 6)

2

Equivalent 18-kip Axle Load Analysis

Vehicle Type	% of Traffic	No. of Vehicles/Day	18-kip Factor	Design Years	Equivalent Axle Loads
Non Commorcial Vehicles	Hanne	vernoles/Day	1 actor	l icais	Axie Louds
Non-Commercial Vehicles	00.00/	0.475	0.0000	00.00	44454
Automobiles	66.0%	2,475	0.0008	20.00	14,454
Buses	0.0%	0	. 0.2500	20.00	0
All Non-Commercial Vehicles	66.0%	2,475			14,454
Commercial Vehicles					
Light Trucks (LT)	31.0%	1,163	0.0100	20.00	84,863
, Medium Trucks	1.5%	56	0.4000	20.00	164,250
Tractor and Semi-Trailer (TS)	1.5%	56	2.0668	20.00	848,680
Truck and Trailer (TT)	0.0%	0	2.0227	20.00	0
Tractor and Semi-Trailer (TST)	0.0%	0	3.1506	20.00	0
All Commercial Vehicles	34.0%	1,275			1,097,792
All Vehicles	100.0%	3,750			1,112,246

ingia Silmonia

TOTALS

Equivalent Axle Loads (EAL's)	1,112,246
Directional Factor	1.00
Lane Factor	1.00
Design Equivalent Axle Loads	1,112,246
Design Traffic Number (DTN)	152

Flexible Pavement Design Analysis

Piolen Veloca

Carminerial Links Drive Revision

PROJECT DATA

Design Life (years)	
Equivalent Axle Loads/Day	**
Total EAL's	1,112,246
Seasonal Variation Factor	1.6
Reliability	90%
Overall Standard Deviation	0.35

SUBGRADE CONDITIONS

AASHTO Classification	**
% Passing #200 Sieve	**
Plasticity Index	**
Correlated R-Value	49
Resilient Modulus MR (psi)	23,385
Design Modulus (psi)	23,385

SERVICEABILITY

Present (2.5 to 5.0)	4.1
Terminal (1.5 to 4.1)	2.6

LAYER COEFFICIENTS	Structural	Drainage
Asphalt Rubber Asphaltic Concrete	0.55	N/A
Asphalt Concrete Surface Course	0.44	N/A
Aggregate Base Course	0.12	0.92
Cement or Bituminous Subgrade	0.23	1.00
Cement or Bituminous Treated Base	0.28	1.00

Designico

Target Structural Number SN:

2.20

	Re	Total				
Alternative	Asphalt Rubber Concrete	Asphalt Concrete Surface	Aggregate Base Course	Plant-Mixed Bituminous Base	Total	Structural Number
Α		3.0	6		9.0	1.98
В		3.5	6.0		9.5	2.20
С		3.0	8		11.0	2.20

104024-02-0500 Ber 10/21/04

355 South Euclid, Suite 107

Tucson, Arizona 85719 Phone 520.770.1789 Fax 520.792.2539

www.terracon.com

September 29, 2004

Standard Pacific of Tucson 4578 North First Avenue Suite 160 Tucson, Arizona 85718-5748

Attn: Mr. Bob Storie

RE: Preliminary Geotechnical Site Evaluation

Proposed Phase II Residential Developments at the Pines Golf Course

North of Cortaro Road and West of Interstate 10

Marana, Arizona

Terracon Project No. 63045195

Terracon Consultants, Inc. (Terracon) has completed our preliminary review of the proposed Phase II Residential Development at the Pines Golf Course. Our preliminary evaluation was performed in general accordance with our proposal number D6304220, dated September 24, 2004.

Introduction

We understand the proposed project consists of Phase II of the area presently known as the Pines Golf Course. Phase II covers about 56 acres and is planned for both single and multifamily housing. Phase II was formerly a golf course.

Presidio Engineering has provided us with a geotechnical report for the Phase II area (performed by Pattison Evanoff Engineering). We have also been provided with a preliminary site exhibit for Phase I (prepared by WLB).

Work Performed

We visited the site on September 27, 2004 and reviewed the site conditions. We reviewed the preliminary site exhibit and geotechnical report provided to us.

Preliminary Findings and Conclusions

This site is surrounded by an existing golf course. The site had previously been a golf course and some of the golf course features are still visible. The geotechnical report we reviewed appeared fairly comprehensive and the field and laboratory work performed appeared typical of the level of work to provide recommendations for a residential subdivision at this site. The

SUBMITTAL NO. PRV - 05154

report provided recommendations for the design of foundations, floor slabs, pavements, and earthwork. The report identified existing fills and recommended further evaluation to help better identify the vertical and lateral extents of those fills. We believe this may be accomplished by performing shallow backhoe test pits, focusing on areas around where existing fills were identified in the soil borings. Any existing site slopes steeper than about 2 to 1 (horizontal to vertical) will likely need to be flattened.

If you have any questions regarding this preliminary evaluation, please contact us.

Sincerely,

TERRACON CONSULTANTS, INC.

Oleg B. Lysyj, P.E.

Geotechnical Services Manager

N:\PUBLIC\04georept\63045195\63045195B.rpt.doc

FOLLOW-UP TO PRELIMINARY GEOTECHNICAL SITE EVALUATION

PROPOSED PHASE II RESIDENTIAL DEVELOPMENTS AT THE PINES GOLF COURSE CONTINENTAL LINKS AND ARIZONA PAVILIONS ROAD MARANA, ARIZONA

TERRACON PROJECT NO. 63045218 NOVEMBER 24, 2003

Prepared for:

STANDARD PACIFIC OF TUCSON 4578 NORTH FIRST AVENUE SUITE 160 TUCSON, ARIZONA 85718

ATTN: MR. BOB STORIE

Prepared by:

TERRACON

355 SOUTH EUCLID AVENUE, SUITE 107 SUBMITTAL NO.

TUCSON, ARIZONA 85719

Phone (520) 770-1789 Fax (520) 792-2539

PR V - 0 5 1 5 4

355 South Euclid, Suite 107

Tucson, Arizona 85719 Phone 520.770.1789 Fax 520.792.2539

www.terracon.com

November 24, 2004

Standard Pacific of Tucson 4578 North First Avenue Suite 160 Tucson, Arizona 85718-5748

Attn: Mr. Bob Storie

RE: Follow-Up to Preliminary Geotechnical Site Evaluation

Proposed Phase II Residential Developments at the Pines Golf Course

Continental Links and Arizona Pavilions Road

Marana, Arizona

Terracon Project No. 63045218

Terracon Consultants, Inc. (Terracon) has completed the follow-up investigation to our preliminary review of the proposed Phase II Residential Development at the Pines Golf Course. Our follow-up investigation was performed in general accordance with our proposal number D6304242, dated September 24, 2004, also reference Terracon Report 63055195 dated September 29, 2004.

Introduction

We understand the proposed project consists of Phase II of the area presently known as the Pines Golf Course. Phase II covers about 56 acres and is planned for both single and multifamily housing. Phase II was formerly a golf course.

Presidio Engineering has provided us with a geotechnical report for the Phase II area (performed by Pattison Evanoff Engineering). We have also been provided with a preliminary site exhibit for Phase I (prepared by WLB).

The original geotechnical report (performed by Pattison Evanoff Engineering) identified existing fill in one area of the golf course. The purpose of this investigation is to evaluate the extents, both in depth and laterally, of existing fills at the site, evaluate slope areas and recommend geometry for cut and fill slopes, and determine the applicability of the original recommendations for portions of the site now planned for multi-family housing.

Proposed Phase II Residential Developments At The Pines Golf Course Terracon Project No. 63045218

Work Performed

On November 4 and 8, 2004 we performed 17 test pits with a John Deere 310G tractor mounted backhoe using an 18-inch wide bucket. The test pits were extended to depths of approximately 5 feet below existing grade at the locations shown on the Site Plan, Figure 1.

The test-pits were located in the field by measurements from property lines and existing site features. The accuracy of test-pit locations should only be assumed to the level implied by the methods used to determine each.

Continuous lithologic logs of each test-pit were recorded by the geotechnical engineer during the excavation. At selected test-pits, samples of the subsurface materials were obtained from excavated trench material.

Groundwater conditions were evaluated in each boring at the time of site exploration.

Findings and Conclusions

This site is surrounded by an existing golf course. The site had previously been a golf course and some of the golf course features are still visible. The geotechnical report we reviewed appeared fairly comprehensive and the field and laboratory work performed appeared typical of the level of work to provide recommendations for a residential subdivision at this site. The report appears to have provided adequate recommendations for the design of foundations, floor slabs, pavements, and earthwork.

Although it was difficult to delineate the existing fill from the native material, it appears that the hill features created during the sculpting of the old golf course contain a minimum of three to four feet of fill material, therefore we recommend the high points be removed. It appears that most of these features will be taken down for the construction of house pads and grading for site drainage.

For permanent slopes in compacted fill and cut native areas, recommended maximum configurations for on-site materials are 2 to 1 (horizontal to vertical). Slopes steeper than 3 to 1 (horizontal to vertical) should be re-vegetated to help reduce surface erosion.

Proposed Phase II Residential Developments At The Pines Golf Course Terracon Project No. 63045218

The face of all slopes should be compacted to the minimum specification for fill embankments. Alternately, fill slopes can be over-built and trimmed to compacted material. If any slope in cut or fill will exceed 25 feet in height, the grading plan should include mid-height benches to intercept surface drainage and divert flow from the face of the embankment.

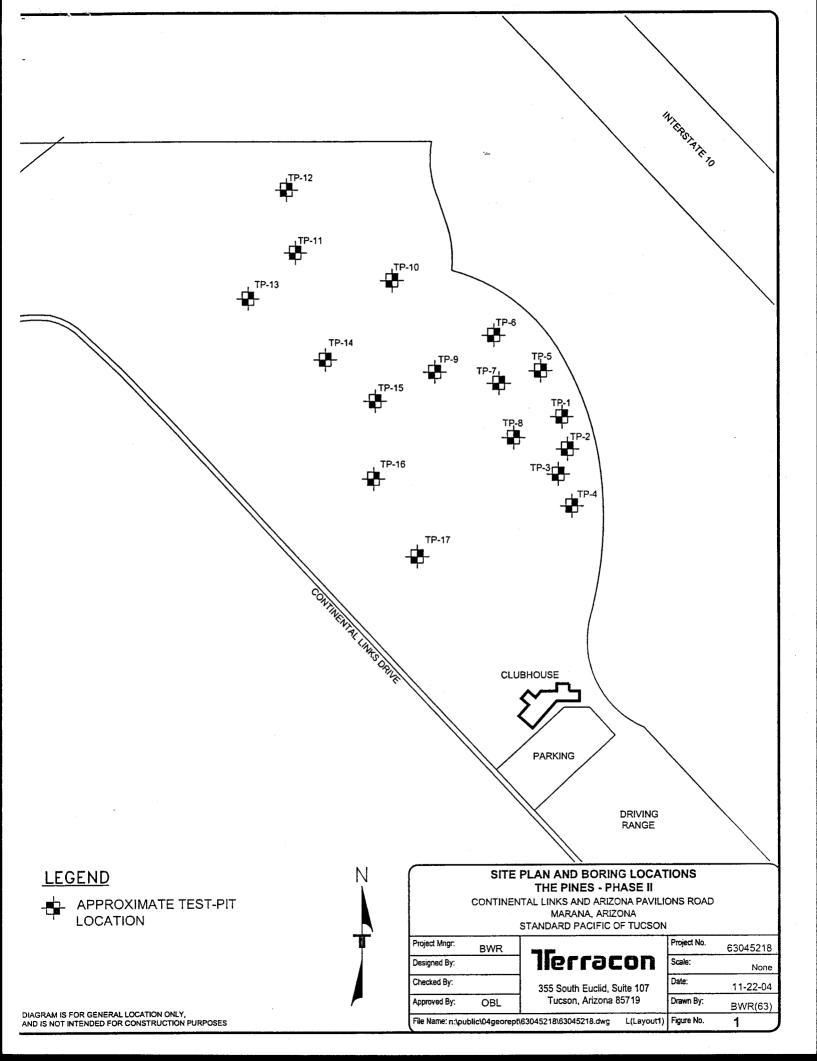
Slopes with inclinations between 2 to 1, and 1 to 1 may be constructed provided they are surfaced with grouted rip-rap or grout at least 6-inches thick, and integrated with a vertical toe-down. The grout toe-down should extend to depths of 1 foot below the base of the slope for slopes 0-5 feet high, 2 feet for slopes 5 to 10 feet high, and 3 feet for slopes 10 to 15 feet high.

If you have any questions regarding this preliminary evaluation, please contact us.

Sincerely,

TERRACON CONSULTANTS, INC.

Bryan W. Reed, E.I.T.


Buy WMI

Project Manager

N:\public\04georept\63045218.rpt

Oleg B. Lysyj, P.E.

Geotechnical Services Manager

	LOG OF TEST PIT NO. TP-01 Page 1 of 1											
CLI	ENT Standard Pacific of Tucson										-	
SIT	The state of the s	PRO	JEC	T								
	Marana, Arizona	Phase II Residential Developments										
					SA	MPLE	S			TESTS		
GRAPHIC LOG	DESCRIPTION	DEPTH, ft.	USCS SYMBOL	NUMBER	TYPE	RECOVERY (in)	BLOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf	Liquid Limit	PLASTICITY INDEX	-200
	FILL: SANDY CLAY/SILT; dark brown,		CL-	1	BS							
	low plasticity fines, moist		ML									
	SANDY CLAY SILT; brown, low plasticity	-	CL									
	fines, moist	_										
	Bottom of Test Pit	5-		\vdash								
ВОКЕНОLE 2000 63045218.GPJ TERR2000.GDT 11/23/04												
The	stratification lines represent the approximate boundary lines	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	1		ı		<u> </u>	
bets 107/	ween soil and rock types: in-situ, the transition may be gradual. ATER LEVEL OBSERVATIONS, ft					BOF	RING S	TART	ED		11	-4-04
000 WL							RING C					-4-04
Mr Mr		20				RIG		JD 31		OREM		BWR
Mr Mr	Backfilled Upon Completion		_		- =		roved			IOB#	6304	5218

	LOG OF TEST PIT NO. TP-02 Page 1 of 1												
CLI	ENT Character of T												
SIT	Standard Pacific of T E The Pines Golf Co		PRO	JEC	Ť								
311	Marana, Arizona		Phase II Residential Developments				ments						
							AMPLES				TESTS		
		•	:	١.									
90	DESCRIPTION			BOL			<u>5</u>		%	ΉΤ		>	
IC L	DESCRIPTION		, A	λX	2		Æ)/FT	"H	ENS		[]	
GRAPHIC LOG			DEPTH, ft.	USCS SYMBOL	NUMBER	TYPE	RECOVERY (in)	BLOWS/FT	WATER CONTENT, %	DRY DENSITY pcf	Liquid	PLASTICITY INDEX	0
GR			8				RE	퓜	≱ 0	DR	르콘	목물	-200
	SILTY SAND; light brown, non- fines, moist	plastic		SM	1	BS							:
	illes, moist		_							•			
			_										
			-										
			-	1									
			_										
			-	1					l L				
			_										
			-										
	5 Bottom of Test Pit		5—										
	Bollom of restric												
ŀ													
	·										ŀ		
1											ŀ		
1													
1													
									i				
0/67/													
=													
00.G													
XXX													
<u> </u>													i i
The	e stratification lines represent the approximate ween soil and rock types: in-situ, the transition	e boundary lines											
ž ——	ATER LEVEL OBSERVATIONS, ft	,			-		ВОГ	RING S	TART	ED		1 -	1-4-04
₩L						<u> </u>	RING C)	1.	1-4-04	
WL] C[f	a			Π	RIG		JD 31	10G	OREM	IAN	BWR
Mr Mr	Backfilled Upon Completion						Арр	roved	C	DBL .	JOB#	630	45218

	LOG OF TEST	PIT I	VO	. 7	TP-()3				F	Page 1	of 1
CLI	ENT Standard Pacific of Tucson											
SIT		PRO	JEC	Ť							-	
0	Marana, Arizona				hase	II Re	esiden	tial De	evelopn			
		- SAMPLES T					TESTS					
GRAPHIC LOG	DESCRIPTION	DEPTH, ft.	USCS SYMBOL	NUMBER	TYPE	RECOVERY (in)	BLOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf	Liquid Limit	PLASTICITY INDEX	-200
	SANDY CLAY/SILT; low plasticity fines, moist		CL- ML		BS							
	Bottom of Test Pit											
The bet	e stratification lines represent the approximate boundary lines ween soil and rock types: in-situ, the transition may be gradual.											
	ATER LEVEL OBSERVATIONS, ft					BOF	RING S	TART	ED		11	-4-04

WATER LEVEL OBSERVATIONS, ft

WL ▼ None WD ▼ None AB

WL ▼ ▼

WL ■ Backfilled Upon Completion

Terracon

BORING S	STARTED		11-4-04
BORING (OMPLETE	ED .	11-4-04
RIG	JD 310G	FOREMAN	1 BWR
Approved	OBL	JOB# 6	3045218

	LOG OF TEST PIT NO. TP-04 Page 1 of 1													
CLI	ENT	ndard Basifis of T	IOCOD											
Standard Pacific of Tucson SITE The Pines Golf Course						PROJECT								
	<u>.</u>	Marana, Arizona					hase	II Re	esiden	tial De	evelopr	nents		
					[-:-		MPLE				TESTS	[
GRAPHIC LOG		DESCRIPTION		DEPTH, ft.	USCS SYMBOL	NUMBER	TYPE	RECOVERY (in)	BLOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf	Liquid Limit	PLASTICITY INDEX	-200
	SANDY CLA fines, moist	Y/SILT; brown, low	plasticity		CL- ML	1	BS							
	5 Bottom of Te	est Pit												
55 pet		ERVATIONS, ft None AB	n may be gradual.					⊢—	RING S		ED			I-4-04
2 VVI		▼ None AB	7 Terr		-6		n					OPEN		BWR
Mr Mr				UL	_{L	J		RIG			10G F			45218
à WI	- I packtilled Ob	oon Completion	1					App	roved		DBL J	JD #	0304	+JZ 10

		L(OG OF TEST	PIT I	NO	. 1	ΓP-()5					Page 1	of 1
CLI	ENT Stan	dard Pacific of Tu	ıcson											
SIT		e Pines Golf Cou		PRO	JEC	T						-		
		Marana, Arizona				P				tial De	evelop	ments		
						<u> </u>	SA	MPLE	S		·	TESTS	;	
GRAPHIC LOG		DESCRIPTION		DЕРТН, ft.	USCS SYMBOL	NUMBER	TYPE	RECOVERY (in)	BLOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf	Liquid	PLASTICITY INDEX	-200
	SILTY SAND;	light brown, non-p	lastic		SM		BS		***************************************					
	5 Bottom of Te	st Pit		- 5-										
3DT 1:														
TERR2000.GDT 11/23/04														
63045218.GPJ bet W	stratification lines repre	sent the approximate I	boundary lines	1	1	<u> </u>	!		!				1	<u> </u>
30452 30452	ween soil and rock types	: in-situ, the transition	may be gradual.					DO:	OINIC C	T A D"	ED		4 4	. 4 04
۔۔۔۔	ATER LEVEL OBSE		 					<u> </u>	RING S					1-4-04
	110110 112	▼ None AB	Terr			7	n				LETEC			I-4-04
Mr Mr		Ţ		CIL	_\	J		RIG		JD 3		OREM		BWR
& Mr	- Backfilled Upo	on Completion						App	roved	(OBL J	OB#	6304	15218

WL Y None WD Y None AB WL Y None WD Y None AB BORING COMPLETED 11-4-04 RIG JD 310G FOREMAN BWR				L	OG OF TEST	PIT	NO	٠ ٦	ΓP-C)6					Page 1	of 1
SITE The Pines Golf Course Marana, Arizona PROJECT Phase II Residential Developments SAMPLES TESTS TEST		CLIE			_											
Marana, Arizona Phase II Residential Developments TESTS TESTS DESCRIPTION DESCRIPTION DESCRIPTION THE LAND OF THE STAND TRACE GRAVEL; light brown, non-plastic fines, moist The stratification lines represent the approximate boundary lines between soil and rock types: in-situ, byte stratilion may be gradual. WATER LEVEL OSSERVATIONS, ft BORING STARTED 11-4-04 WATER LEVEL OSSERVATIONS, ft BORING STARTED 11-4-04							UEC	<u> </u>								
DESCRIPTION THE HARD SO	1.8	SI I E	= 11			PRO	JEC		haen	ll D	nehise	fial D	ovelor	mente		
DESCRIPTION Total Statistication lines represent the approximate boundary lines between soil and rock types: in-attu, the transition may be gradual. The stratification lines represent the approximate boundary lines between soil and rock types: in-attu, the transition may be gradual. The stratification lines represent the approximate boundary lines between soil and rock types: in-attu, the transition may be gradual. The stratification lines represent the approximate boundary lines between soil and rock types: in-attu, the transition may be gradual. SM	-	Т		maiana, Anzona		_	T	1				D	- + e i o j		<u> </u>	
SANDY CLAY/SILT: brown, low plasticity fines, moist SILTY SAND TRACE GRAVEL; light brown, non-plastic fines, moist SM Bottom of Test Pit The stratification lines represent the approximate boundary lines between soil and rock types. In-situ, the transition may be gradual. WATER LEVEL OBSERVATIONS, ft BORING STARTED 11-4-04																
SANDY CLAY/SILT: brown, low plasticity fines, moist SILTY SAND TRACE GRAVEL; light brown, non-plastic fines, moist SM Bottom of Test Pit The stratification lines represent the approximate boundary lines between soil and rock types. In-situ, the transition may be gradual. WATER LEVEL OBSERVATIONS, ft BORING STARTED 11-4-04	٤	۱ ۶					ŭ			(ii)		,e	≥			
SANDY CLAY/SILT: brown, low plasticity fines, moist SILTY SAND TRACE GRAVEL; light brown, non-plastic fines, moist SM Bottom of Test Pit The stratification lines represent the approximate boundary lines between soil and rock types. In-situ, the transition may be gradual. WATER LEVEL OBSERVATIONS, ft BORING STARTED 11-4-04	1 2	3		DESCRIPTION		=	₩.	~		ЯY	F.	5	NSI		Ė	
SANDY CLAY/SILT: brown, low plasticity fines, moist SILTY SAND TRACE GRAVEL; light brown, non-plastic fines, moist SM Bottom of Test Pit The stratification lines represent the approximate boundary lines between soil and rock types. In-situ, the transition may be gradual. WATER LEVEL OBSERVATIONS, ft BORING STARTED 11-4-04						Į ∓	SS	BE	ш	OVE.	/S/	吊戶	DE	<u></u>	i Si	
SANDY CLAY/SILT: brown, low plasticity fines, moist SILTY SAND TRACE GRAVEL; light brown, non-plastic fines, moist SM Bottom of Test Pit The stratification lines represent the approximate boundary lines between soil and rock types. In-situ, the transition may be gradual. WATER LEVEL OBSERVATIONS, ft BORING STARTED 11-4-04	Ģ	ž				E F	SC	3	ΥP	ZEC	350	NA NO NA	K Ž	<u> </u> <u> </u> <u> </u>	ŽŽ.	500
SILTY SAND TRACE GRAVEL; light brown, non-plastic fines, moist SM SM SM SM SM The stratification lines represent the approximate boundary lines between soil and notk types: in-situ, the transition may be gradual. WATER LEVEL OBSERVATIONS, ft BORING STARTED 11-4-04	337		SANDY CLAY	Y/SILT; brown. low	plasticity	"	1			<u></u>		-	= =	 -		•
brown, non-plastic fines, moist 5 Bottom of Test Pit The stratification lines represent the approximate boundary lines between soil and rock types: in-situ, the transition may be gradual. WATER LEVEL OBSERVATIONS, ft BORING STARTED 11-4-04			fines, moist	,,	, ,	_									i	
brown, non-plastic fines, moist 5 Bottom of Test Pit The stratification lines represent the approximate boundary lines between soil and rock types: in-situ, the transition may be gradual. WATER LEVEL OBSERVATIONS, ft BORING STARTED 11-4-04																
brown, non-plastic fines, moist 5 Bottom of Test Pit The stratification lines represent the approximate boundary lines between soil and rock types: in-situ, the transition may be gradual. WATER LEVEL OBSERVATIONS, ft BORING STARTED 11-4-04						-	1									
brown, non-plastic fines, moist 5 Bottom of Test Pit The strattification lines represent the approximate boundary lines between soil and rock types: in-situ, the transition may be gradual. WATER LEVEL OBSERVATIONS, ft BORING STARTED 11-4-04						_									ĺ	
brown, non-plastic fines, moist 5 Bottom of Test Pit The stratification lines represent the approximate boundary lines between soil and rock types: in-situ, the transition may be gradual. WATER LEVEL OBSERVATIONS, ft BORING STARTED 11-4-04						1 -			- 1			1		1		
brown, non-plastic fines, moist 5 Bottom of Test Pit The stratification lines represent the approximate boundary lines between soil and rock types: in-situ, the transition may be gradual. WATER LEVEL OBSERVATIONS, ft BORING STARTED 11-4-04						-	1									
brown, non-plastic fines, moist 5 Bottom of Test Pit The stratification lines represent the approximate boundary lines between soil and rock types: in-situ, the transition may be gradual. WATER LEVEL OBSERVATIONS, ft BORING STARTED 11-4-04]									
brown, non-plastic fines, moist 5 Bottom of Test Pit The stratification lines represent the approximate boundary lines between soil and rock types: in-situ, the transition may be gradual. WATER LEVEL OBSERVATIONS, ft BORING STARTED 11-4-04																
brown, non-plastic fines, moist 5 Bottom of Test Pit The stratification lines represent the approximate boundary lines between soil and rock types: in-situ, the transition may be gradual. WATER LEVEL OBSERVATIONS, ft BORING STARTED 11-4-04	W.	#	3 SII TV SAND	TRACE GRAVEL	light		SM	-								
The stratification lines represent the approximate boundary lines between soil and rock types: in-situ, the transition may be gradual. WATER LEVEL OBSERVATIONS, ft BORING STARTED 11-4-04			brown, non-p	lastic fines, moist	ngir		J Sivi					1				
The stratification lines represent the approximate boundary lines between soil and rock types: in-situ, the transition may be gradual. WATER LEVEL OBSERVATIONS, ft BORING STARTED 11-4-04			•	•		-	1									
The stratification lines represent the approximate boundary lines between soil and rock types: in-situ, the transition may be gradual. WATER LEVEL OBSERVATIONS, ft BORING STARTED 11-4-04						_	-									
The stratification lines represent the approximate boundary lines between soil and rock types: in-situ, the transition may be gradual. WATER LEVEL OBSERVATIONS, ft BORING STARTED 11-4-04																
The stratification lines represent the approximate boundary lines between soil and rock types: in-situ, the transition may be gradual. WATER LEVEL OBSERVATIONS, ft BORING STARTED 11-4-04						_	1									
The stratification lines represent the approximate boundary lines between soil and rock types: in-situ, the transition may be gradual. WATER LEVEL OBSERVATIONS, ft BORING STARTED 11-4-04	且			et Dit		5-	-							-		
	1		BOLLOIT OF 16	51 FII												
															}	
										'						
	5															
	1/23/															
	5											1				
	5															
	XXX															
	7											<u></u>				
	5 .	The	stratification lines repre	esent the approximate	boundary lines											
	0452	betv	veen soil and rock types	: in-situ, the transition	may be gradual.											. 4 = :
WL Y None WD Y None AB WL Y Sackfilled Upon Completion BORING COMPLETED 11-4-04 RIG JD 310G FOREMAN BWR Approved OBL JOB# 63045218					! _											
WL Backfilled Upon Completion RIG JD 310G FOREMAN BWR Approved OBL JOB# 63045218	7 200	٨L			175							OMP	ETE)	11	1-4-04
WL Backfilled Upon Completion Approved OBL JOB# 63045218	Ĭ	ΝĹ	五	<u>v</u>	IIEII	حال	_(J		RIG		JD 31	0G F	OREM	AN	BWR
	SK /	٧L	Backfilled Upo	on Completion	1	_ _	_			App	roved		BL .	JOB#	6304	45218

\bigcap	LC	OG OF TEST I	PIT I	NO	٦.	ΓP-()7				F	Page 1	of 1
CLI	ENT Standard Pacific of Tud	cson											
SIT			PRO	JEC		hase	ı II R	esiden	tial D	evelopn	nents		
	maiana, ruzona				<u>.</u>		MPLE				TESTS		
GRAPHIC LOG	DESCRIPTION		DEPTH, ft.	USCS SYMBOL	NUMBER	TYPE	RECOVERY (in)	BLOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf	Liquid Limit	PLASTICITY INDEX	-200
	SANDY CLAY/SILT; brown, low p fines, moist	lasticity	-	CL- ML	1	BS							
	4												
	SILTY SAND; non-plastic fines, m	noist		SM									
			_										
	Bottom of Test Pit		5—	\vdash				<u> </u>	<u> </u>				
BOREHOLE 2000 63045218.GPJ TERR2000.GDT 11/23/04													
The	stratification lines represent the approximate boween soil and rock types: in-situ, the transition r	oundary lines may be gradual.											
W 9304	ATER LEVEL OBSERVATIONS, ft						вог	RING S	TART	ED		11	-4-04
000 WL	▼ None WD ▼ None AB	There-	7					<u> </u>		LETED			-4-04
WL	<u>Ā</u>	Tlerra	JL	_L	J		RIG		JD 31		DREM		BWR
Mr Mr	Backfilled Upon Completion						App	roved	(DBL JO)B#	6304	15218

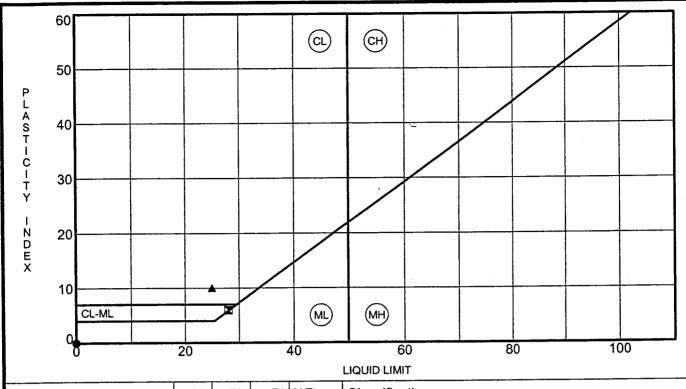
		· L	OG OF TEST	PIT I	NO	٦.	rp-(8(F	Page 1	of 1
CLII	ENT Sta	ndard Pacific of Tu	ucson			•								
SITI		he Pines Golf Cou		PRO	JEC	T								
		Marana, Arizona	1			P				tial De	evelop	oments		
						<u> </u>	SA	MPLE	S		I	TESTS		
GRAPHIC LOG		DESCRIPTION		DЕРТН, ft.	USCS SYMBOL	NUMBER	TYPE	RECOVERY (in)	BLOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf	Liquid Limit	PLASTICITY INDEX	-200
	SANDY CLA fines, moist	<u>Y/SILT</u> ; brown, low	plasticity	-	CL- ML	1	BS							
	5 Bottom of Te	aet Pit	· · · · · · · · · · · · · · · · · · ·	5										
The betw	stratification lines repre- veen soil and rock type	esent the approximate t s: in-situ, the transition	boundary lines I may be gradual.											
WA	TER LEVEL OBSE	RVATIONS, ft						BOF	RING S	TART	ED		11	-4-04
WL	[▽] None WD	▼ None AB						BOF	RING C	OMPL	ETEC)	11	-4-04
WL	Ā	<u>Ā</u>	7 Terr	عال	_C	J		RIG		JD 31	0G F	OREM	AN	BWR
WL	Backfilled Up	on Completion						App	roved	C	BL J	IOB#	6304	5218

	LOG OF TES	PIT	NO	. 7	rp-(9			,	<u> f</u>	Page 1	of 1
CLI	ENT Standard Pacific of Tucson											
SIT		PRO	JEC	т					-			
311	Marana, Arizona	' ' '	0_0		hase	ı II Re	esiden	tial De	evelo	pments		
	71141 4174, 7 4 120114			·		MPLE				TESTS		
		}										
ပ္ခ			9			(in)		,	_			
Ä	DESCRIPTION	نے ا	BE	_		RY	Ë.	<u>+</u>	.is		Ϋ́	
뚩	•	Ξ	SS	BE	,,,	OVE	NS/	HE HE	딤		EX.	
GRAPHIC LOG		ДЕРТН, ft.	USCS SYMBOL	NUMBER	TYPE	RECOVERY (in)	3LOWS/FT	WATER CONTENT, %	DRY DENSITY	Ciquid	PLASTICITY INDEX	-200
	SANDY SILT WITH ORGANIC		ML	1	BS	<u>и</u>	ш.	>0			ш_	
	MATERIAL; loose, non-plastic fines,		""	'						İ		
	moist, roots and grass	-										
		-	ł									
	•	l				·						
	2	-	CM	ļ								
	SILTY SAND; very loose, non-plastic fines, moist		SM									
	SANDY LEAN CLAY; brown, loose to	-	CL									
	medium dense, medium plasticity fines, moist	_										
	Hoist									.		
		-	1									
		_										
		ļ	ĺ									
		-	}									
	5	_ 5_										
	Bottom of Test Pit											
1	·											
Ì				1					ļ			
1												
					İ							
				İ				٠.				
ł	·	1										
1												
23/04									Ì			
Ē												
0.GD											}	
R200												
TER												
O The	a stratification lines represent the approximate houndary lines		<u> </u>					<u> </u>	<u>' </u>		!	
bet	e stratification lines represent the approximate boundary lines ween soil and rock types: in-situ, the transition may be gradual.											
g W	ATER LEVEL OBSERVATIONS, ft					BOF	RING S	TART	ED		11	-8-04
₩L	▼ None WD ▼ None AB					BOF	RING C	OMPI	LETE	D	11	-8-04
핑 WL		ال:				RIG		JD 31	0G	FOREM	AN	BWR
ВОКЕНОLE 2000 63045218.GPJ ТЕКК2000.GDT 11/23/04	Backfilled Upon Completion						roved			JOB#		45218

	LOG OF TEST	PIT	NO		Γ P- 1	10				F	Page 1	of 1
CLI	ENT Standard Pacific of Tucson								-			
SIT		PRC	JEC	T								
	Marana, Arizona			F				tial De	velop	oments		
1					SA	MPLE	<u>:S</u>			TESTS		
GRAPHIC LOG	DESCRIPTION	DEPTH, ft.	USCS SYMBOL	NUMBER	TYPE	RECOVERY (in)	BLOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf	Liquid Limit	PLASTICITY INDEX	-200
	SANDY SILT WITH ORGANIC		ML	1	BS							
	MATERIAL; loose, low plasticity fines, moist	_										
	SANDY LEAN CLAY; brown, loose to medium dense, medium plasticity fines, moist		CL									
	5	J 5—										
	Bottom of Test Pit											
1/23/04												
ВОКЕНОLE 2000 63045218.GPJ ТЕКК2000.GDT 11/23/04	e stratification lines represent the approximate boundary lines											
55 bet	ween soil and rock types: in-situ, the transition may be gradual.											
8 W/	ATER LEVEL OBSERVATIONS, ft						RING S					-8-04
β WL ≝ ₩		7	-6				RING C					-8-04
를 WL	λ h	U	"L	J		RIG		JD 31		OREM		BWR
Mr Mr	Backfilled Upon Completion					App	roved	0	BL J	IOB#	6304	5218

	LOG OF TEST	PIT	NO	. 1	Γ P- 1	1				F	Page 1	of 1
CLII	ENT Standard Pacific of Tucson					_ 						
SIT		PRO	JEC	T								
]	Marana, Arizona							tial De	evelopr			
				Ŀ		MPLE				TESTS		
GRAPHIC LOG	DESCRIPTION	ОЕРТН, А.	USCS SYMBOL	NUMBER	TYPE	RECOVERY (in)	BLOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf	Liquid Limit	PLASTICITY INDEX	-200
	SANDY SILT WITH ORGANIC		CL	1	BS							
	MATERIAL; loose, medium plasticity fines, moist	- -			;							
	SANDY LEAN CLAY; brown, loose to	7 -	CL									
	medium dense, medium plasticity fines, moist	-										!
	moist											
		_										
		-										
		_]									
		-										
	5	_ 5—										
	Bottom of Test Pit											
63045218.GPJ TERR2000.GDT 11723/04												
The	stratification lines represent the approximate boundary lines	<u> </u>	<u> </u>			I	!	i	1			
petv	ween soil and rock types: in-situ, the transition may be gradual.					<i>_</i>						
	ATER LEVEL OBSERVATIONS, ft						RING S					-8-04
₩L	▼ None WD ▼ None AB ▼ ▼ ▼		=_					OMPI	ETED		11	-8-04
Mr Mr	ā Ā IIGL	JU	_C	J		RIG		JD 31	OG F	OREM	AN	BWR
Mr Mr	Backfilled Upon Completion					Арр	roved	C	BL JO)B#	6304	5218

	LOG OF TEST	PIT I	10 .	. T	'P-1	2				F	Page 1	of 1
CLI	ENT Standard Pacific of Tucson											
SIT	E The Pines Golf Course	PRO	JEC									
	Marana, Arizona							tial De	velop	ments		
			[-	SA	MPLE	<u>ა</u>			TESTS	Т	
GRAPHIC LOG	DESCRIPTION	DЕРТН, ft.	USCS SYMBOL	NUMBER	TYPE	RECOVERY (in)	BLOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf	Liquid Limit	PLASTICITY INDEX	-200
	SANDY SILT WITH ORGANIC 0.5 MATERIAL; medium plasticity fines, moist		CL	1	BS							
	0.5 MATERIAL; medium plasticity fines, moist	- ∤	C	$\left \cdot \right $				[-		
	SANDY LEAN CLAY; medium plasticity fines, moist		CL									
-J 1EKKZUUU.5D1 11Z3J04	Bottom of Test Pit	5										
5 Th	e stratification lines represent the approximate boundary lines tween soil and rock types: in-situ, the transition may be gradual.											
W S	ATER LEVEL OBSERVATIONS, ft					вог	RING S	START	ΓED		_ 1	1-8-04
₹ WI		;		-			RING ()	1	1-8-04
WI WI		J		J	П	RIG	-	JD 3		FOREM		BWR
MI WI						App	roved	. (OBL .	JOB#	630	45218


	LOG OF TEST	PIT	NO.	. 7	P-1	3				F	Page 1	of 1
CL	ENT Standard Pacific of Tucson											
SIT	E The Pines Golf Course	PRC	JEC			***************************************						
	Marana, Arizona	<u> </u>	1					tial De	evelo	pments TESTS		
		İ			SA	MPLE	<u>s</u>			IESIS		
GRAPHIC LOG	DESCRIPTION	DEPTH, ft.	USCS SYMBOL	NUMBER	TYPE	RECOVERY (in)	BLOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf	Liquid Limit	PLASTICITY INDEX	-200
Ш	SANDY SILT WITH ORGANIC		ML	1	BS					0	0	60
	MATERIAL; loose, non-plastic fines, moist	-	1									
		- 5-	ML									
JPJ TERKZGGG.GDT TIEGGG												
Th be	e stratification lines represent the approximate boundary lines tween soil and rock types: in-situ, the transition may be gradual.											
1	ATER LEVEL OBSERVATIONS, ft					ВОГ	RING S	STAR	ΓED		1	1-8-04
W	- [▽] None WD [▼] None AB						RING (COMP	LETE	D	1	1-8-04
W			_t			RIG		JD 3		FOREM		BWR
Š W	Backfilled Upon Completion					Арр	roved	(OBL	JOB#	630	45218

	LOG OF TEST	PIT I	10	. 1	ΓP-1	4				F	Page 1	of 1
CLI	ENT Standard Pacific of Tucson											
SIT		PRO	JEC									
	Marana, Arizona				hase	II Re	siden	tial De	evelopn	nents		
					SA	MPLE	<u>s</u>			TESTS	T	
GRAPHIC LOG	DESCRIPTION	DEPTH, ft.	USCS SYMBOL	NUMBER	TYPE	RECOVERY (in)	BLOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf	Liquid Limit	PLASTICITY INDEX	-200
	SANDY SILT WITH ORGANIC		ML	1	BS							
	MATERIAL; loose, non-plastic fines, moist	_	}									
		_	<u> </u>	L_								
	SANDY LEAN CLAY; loose to medium dense, non-plastic fines, moist	-	ML									
		- -				*/						
	5	5—	<u> </u>					<u> </u>				
OREHOLE 2000 63045218.GPJ TERRY2000.GDJ 11723/04	Bottom of Test Pit											
7318 Gr he 7318 Gr	e stratification lines represent the approximate boundary lines tween soil and rock types: in-situ, the transition may be gradual.											
W 8304	ATER LEVEL OBSERVATIONS, ft					воі	RING	STAR	ΓED		1	1-8-04
N N						<u> </u>			LETED		1	1-8-04
W OF		3			N	RIG		JD 3		OREM	IAN	BWR
N S	Backfilled Upon Completion						roved			OB#	630	45218

	LOG OF TEST	PIT	NO	. 1	P-1	5				F	Page 1	of 1
CL	ENT Standard Pacific of Tucson											
SIT		PRO	JEC	T								
	Marana, Arizona				hase	II Re	siden	tial De	evelop	ments		
				-!-	SA	MPLE	S			TESTS		
GRAPHIC LOG	DESCRIPTION	ОЕРТН, ft.	USCS SYMBOL	NUMBER	TYPE	RECOVERY (in)	BLOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf	Liquid Limit	PLASTICITY INDEX	-200
TII	SANDY SILT WITH ORGANIC		ML	1	BS					28	6	79
	MATERIAL; loose, low plasticity fines, moist 2 SANDY SILT; loose to medium dense,		ML									-
	low plasticity fines, moist	-										
	Bottom of Test Pit	5—										
Th be	e stratification lines represent the approximate boundary lines ween soil and rock types: in-situ, the transition may be gradual.											
	ATER LEVEL OBSERVATIONS, ft						RING S					-8-04
∛ WI					n	BOF	RING C					-8-04 BWR
WI WI	Rackfilled Upon Completion	U	_{			RIG				FOREM JOB#		45218
š Wi	Backfilled Upon Completion					App	roved		JRL	JUB#	030	4

	LOG OF TEST	PIT	NO	. 1	Γ P- 1	16				F	Page 1	of 1
CL	ENT Standard Pacific of Tucson											
SIT		PRO	JEC	T					***********			
	Marana, Arizona		T	P				tial De	evelop	ments		
					SA	MPLE	S		Γ	TESTS		
GRAPHIC LOG	DESCRIPTION	DЕРТН, ft.	USCS SYMBOL	NUMBER	TYPE	RECOVERY (in)	BLOWS/FT.	WATER CONTENT, %	DRY DENSITY pof	Liquid Limit	PLASTICITY INDEX	-200
Ш	SANDY SILT WITH ORGANIC		ML	1	BS							
	MATERIAL; loose, non-plastic fines, moist	-										
	SANDY LEAN CLAY; brown, loose to medium dense, medium plasticity fines, moist	_										
			CL									
		_	-									
		_										
						18. 1						:
		-	1									
		-	-						·			
										1		
		-	Ī									
للل	5 Bottom of Test Pit	5-	-	-				ļ <u> </u>		+		
	Bottom of Test Fit				:							
İ												
l												
1												
				ŀ								
5												
1												
100.												
K200		-										
Į.												
Th	e stratification lines represent the approximate boundary lines ween soil and rock types: in-situ, the transition may be gradual.	1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-	1	1		<u> </u>	<u> </u>	<u> </u>		ila e	
5	ATER LEVEL OBSERVATIONS, ft	· · · · · ·				BOF	RING S	TART	ED		11	-8-04
W							RING C)		-8-04
W		aſ			П	RIG		JD 31		OREM		BWR
wi	Backfilled Upon Completion					Арр	roved	C	DBL .	IOB#	6304	15218

	LOG OF TEST PIT NO. TP-17 Page 1 of 1											
CLI	ENT Standard Pacific of Tucson									·		
SIT	E The Pines Golf Course	PRO	JEC		-				_			
L	Marana, Arizona			_		II RE		tial De	evelop	ments TESTS		
					SA	IVIFLE				1 1	1	
GRAPHIC LOG	DESCRIPTION	ОЕРТН, Я.	USCS SYMBOL	NUMBER	TYPE	RECOVERY (in)	BLOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf	Liquid Limit	PLASTICITY INDEX	-200
	SANDY CLAY WITH ORGANIC MATERIAL; loose top soil, low plasticity fines, moist	_	ML	1	BS					25	10	65
	1.5		1									
	SANDY LEAN CLAY; loose to medium dense, medium plasticity fines, moist		CL	,								
		-										
	Bottom of Test Pit	5										
24/04												
BOREHOLE 2000 63045218.GPJ TERR2000.GDT 11/24/04												
76 Th	e stratification lines represent the approximate boundary lines tween soil and rock types: in-situ, the transition may be gradua	al.										
6304 W	ATER LEVEL OBSERVATIONS, ft					во	RING	STAR	TED		1	1-8-04
% W	- None WD None AB			_		во	RING	COMF	LETE	D	1	1-8-04
W	TĀ Ā IS	ll a			П	RIC		JD 3	10G	FOREM	IAN	BWR
M See	Backfilled Upon Completion					Apr	oroved		OBL	JOB#	630	45218

	EIQOIO EIMIT										
Γ	Specimen Identification	LL	PL	PI	%Fines	Classification					
•	TP-13 0.0ft	NP	NP	NP	60	SANDY SILT WITH ORGANIC MATERIAL (ML)					
×	TP-15 0.0ft	28	22	6	79	SANDY SILT WITH ORGANIC MATERIAL (ML)					
1	TP-17 0.0ft	25	15	10	65	SANDY CLAY WITH ORGANIC MATERIAL (CL)					
T											
r											
r											
r											
r											
r											
r											
ŀ											
l											
T											
5											
S 63045218.GPJ 1ERIYACUN.GDI 11/24/04											
- J											
- Q											
		1									
19.67 19.05											
30452											
<u>ف</u>	ATTENDEDO LIMITO DECLILITO										

Tlerracon

ATTERBERG LIMITS RESULTS

Project: Phase II Residential Developments Site: The Pines Golf Course Marana, Arizona

Job #: 63045218 Date: 11-24-04

-	Kemarks					
	Sulfates	(mdd)				
Corrosivity	Resistivity Water Soluble					
ပိ	Resistivity	(ohm-cm)				
	Į					
no	Expansion	(%)				
Expansion	Surcharge Expansion	(bst)				
molded	Remolded Expansion Dry Water (pst) (pcf) (%)					
Re						
	imits	Ы	g	9	9	1
fication	Atterberg Li	ЪГ	NP NP	22	15 10	
Classific		7	ΝP	28	25	
Ö	Passing	#200 Sieve (%)	90	79	65	
operties	Water	Dry Density Water #200 Content (%) Sieve (%) LL PL PI				
In-Situ Properties	Dry Density (pcf)					
USCS Soil Class.		MF	0.0 CL-ML	ี่		
:	Borehole Depth No. (ft.)		0.0	0.0	0.0	
			TP-13	TP-15	TP-17	

REMARKS

Definition and/or moisture determined from one or more rings of a multi-ring sample.

Visual Classification.

Submerged to approximate saturation.

Compacted density (approximately 95% of ASTM D698 maximum density at moisture content slightly below optimum). SOIL PROPERTIES 63045218.GPJ TERRZ000.GDT 11/23/04

lerracon

SUMMARY OF LABORATORY RESULTS

Site: The Pines Golf Course Marana, Arizona Project: Phase II Residential Developments

Job #: 63045218

Date: 11-23-04

GENERAL NOTES

DRILLING & SAMPLING SYMBOLS:

SS:	Split Spoon - 1-3/8" I.D., 2" O.D., unless otherwise noted	HS:	Hollow Stem Auger
ST:	Thin-Walled Tube - 2" O.D., unless otherwise noted	PA:	Power Auger
RS:	Ring Sampler - 2.42" I.D., 3" O.D., unless otherwise noted	HA:	Hand Auger
DB:	Diamond Bit Coring - 4", N, B	RB:	Rock Bit
BS:	Bulk Sample or Auger Sample	WB:	Wash Boring or Mud Rotary

The number of blows required to advance a standard 2-inch O.D. split-spoon sampler (SS) the last 12 inches of the total 18-inch penetration with a 140-pound hammer falling 30 inches is considered the "Standard Penetration" or "N-value". For 3" O.D. ring samplers (RS) the penetration value is reported as the number of blows required to advance the sampler 12 inches using a 140-pound hammer falling 30 inches, reported as "blows per foot," and is not considered equivalent to the "Standard Penetration" or "N-value".

WATER LEVEL MEASUREMENT SYMBOLS:

WL:	Water Level	WS:	While Sampling	N/E:	Not Encountered
WCI:	Wet Cave in	WD:	While Drilling		
DCI:	Dry Cave in	BCR:	Before Casing Removal		
AB:	After Boring	ACR:	After Casing Removal		

Water levels indicated on the boring logs are the levels measured in the borings at the times indicated. Groundwater levels at other times and other locations across the site could vary. In pervious soils, the indicated levels may reflect the location of groundwater. In low permeability soils, the accurate determination of groundwater levels may not be possible with only short-term observations.

DESCRIPTIVE SOIL CLASSIFICATION: Soil classification is based on the Unified Classification System. Coarse Grained Soils have more than 50% of their dry weight retained on a #200 sieve; their principal descriptors are: boulders, cobbles, gravel or sand. Fine Grained Soils have less than 50% of their dry weight retained on a #200 sieve; they are principally described as clays if they are plastic, and silts if they are slightly plastic or non-plastic. Major constituents may be added as modifiers and minor constituents may be added according to the relative proportions based on grain size. In addition to gradation, coarse-grained soils are defined on the basis of their in-place relative density and fine-grained soils on the basis of their consistency.

CONSISTENCY OF FINE-GRAINED SOILS

RELATIVE DENSITY OF COARSE-GRAINED SOILS

GRAIN SIZE TERMINOLOGY

PLASTICITY DESCRIPTION

	<u>Standard</u>		<u>Standard</u>		
<u>Unconfined</u>	Penetration or		Penetration or		
Compressive	N-value (SS)		N-value (SS)	Ring Sampler (RS)	D. L. Char Danatha
Strength, Qu, psf	Blows/Ft.	<u>Consistency</u>	Blows/Ft.	Blows/Ft.	Relative Density
< 500	<2	Very Soft	0 - 3	0-6	Very Loose
500 - 1,000	2-3	Soft	4 – 9	7 - 18	Loose
1,001 - 2,000	4-6	Medium Stiff	10 – 29	19-58	Medium Dense
2,001 - 4,000	7-12	Stiff	30 – 49	59-98	Dense
4,001 - 8,000	13-26	Very Stiff	50+	99+	Very Dense
8,000+	26+	Hard			

RELATIVE PROPORTIONS OF SAND AND GRAVEL

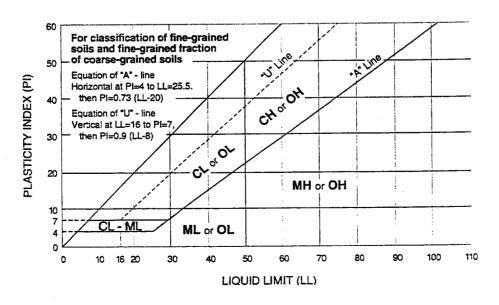
<u>Descriptive Term(s) of other</u> <u>constituents</u>	Percent of Dry Weight	Major Component of Sample	Particle Size
Trace With	< 15 15 – 29	Boulders Cobbles	Over 12 in. (300mm) 12 in. to 3 in. (300mm to 75 mm)
Modifier	> 30	Gravel	3 in. to #4 sieve (75mm to 4.75 mm) #4 to #200 sieve (4.75mm to 0.075mm)
RELATIVE PROPORTIONS	OF FINES	Sand Silt or Clay	Passing #200 Sieve (4.75mm)

---inting Town/a) of athor

I ercent of	1 2/10/1/01/	, , , , , , , , , , , , , , , , , , , ,
Dry Weight	<u>Term</u>	Plasticity Index
< 5	Non-plastic	0
5 – 12	Low	1-10
> 12	Medium	11-30
	High	30+
	<u>Dry Weight</u> < 5 5 – 12	Dry Weight Term < 5

Parcent of

UNIFIED SOIL CLASSIFICATION SYSTEM


Criteria fo		Soil Classification			
O. Acida io	r Assigning Group Symbo	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Group Symbol	Group Name⁵
Coarse Grained Soils	Gravels	Clean Gravels	Cu ≥ 4 and 1 ≤ Cc ≤ 3 ^E	GW	Well-graded gravel ^f
More than 50% retained	More than 50% of coarse	Less than 5% fines ^c	Cu < 4 and/or 1 > Cc > 3 ^E	GP	Poorly graded gravel ^F
on No. 200 sieve	fraction retained on No. 4 sieve	Gravels with Fines	Fines classify as ML or MH	GM	Silty gravel ^{F.c. H}
OH NO. 200 Sieve		More than 12% fines ^c	Fines classify as CL or CH	GC	Clayey gravel ^{F,G,H}
	Sands	Clean Sands	Cu ≥ 6 and 1 ≤ Cc ≤ 3 ^E	SW	Well-graded sand
	50% or more of coarse	Less than 5% fines ^b	Cu < 6 and/or 1 > Cc > 3 ^E	SP	Poorly graded sand
	fraction passes No. 4 sieve	Sands with Fines	Fines classify as ML or MH	SM	Silty sand ^{c,n}
		More than 12% fines ^b	Fines Classify as CL or CH	SC	Clayey sand ^{GRI}
Fine-Grained Soils	ed Soils Silts and Clavs inorganic		PI > 7 and plots on or above "A" lin	e₁ CL	Lean clay ^{KLM}
50% or more passes the	Liquid limit less than 50	_	PI < 4 or plots below "A" line	ML	SiltKLM
No. 200 sieve		organic	Liquid limit - oven dried < 0.7	5 OL	Organic clay****
			Liquid limit - not dried	. OL	Organic silt ^{KLMO}
	Silts and Clays	inorganic	PI plots on or above "A" line	СН	Fat clay ^{KLM}
	Liquid limit 50 or more	-	PI lots below "A" line	МН	Elastic Silt ^{K,LM}
		organic	Liquid limit - oven dried	< 0.75 OH	Organic clay
		•	Liquid limit - not dried	5 011	Organic siltKLMO
Highly organic soils	Primar	ily organic matter, dark in	color, and organic odor	PT	Peat

ABased on the material passing the 3-in. (75-mm) sieve

$$E_{Cu} = D_{60}/D_{10}$$
 $Cc = \frac{(D_{30})^2}{D_{10} \times D_{60}}$

HIf fines are organic, add "with organic fines" to group name.

PI plots below "A" line.

^B If field sample contained cobbles or boulders, or both, add "with cobbles or boulders, or both" to group name.

^CGravels with 5 to 12% fines require dual symbols: GW-GM well-graded gravel with silt, GW-GC well-graded gravel with clay, GP-GM poorly graded gravel with silt, GP-GC poorly graded gravel with clay.

Description of the state of

^F If soil contains ≥ 15% sand, add "with sand" to group name.

GIf fines classify as CL-ML, use dual symbol GC-GM, or SC-SM.

¹ If soil contains ≥ 15% gravel, add "with gravel" to group name.

^J If Atterberg limits plot in shaded area, soil is a CL-ML, silty clay.

K If soil contains 15 to 29% plus No. 200, add "with sand" or "with gravel," whichever is predominant.

 $^{^{\}rm L}$ If soil contains \geq 30% plus No. 200 predominantly sand, add "sandy" to group name.

M If soil contains ≥ 30% plus No. 200, predominantly gravel, add "gravelly" to group name.

 $^{^{}N}\text{PI} \ge 4$ and plots on or above "A" line.

O PI < 4 or plots below "A" line.

PPI plots on or above "A" line.

HYDROLOGY AND HYDRAULICS
REPORT
FOR
THE PINES II

PRV -05154

December 2, 2005

Prepared by:

MMLA Psomas 800 E. Wetmore Road, Suite 110 Tucson, AZ 85719

MMLA Psomas: 05082-78

M M L A

SUBMITTAL NO.

HYDROLOGY AND HYDRAULICS REPORT FOR THE PINES II

Location:

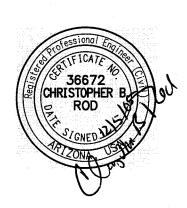
The proposed site is located in the SE ¼ of Section 22, NE ¼ of Section 27, NW ¼ of Section 26, Township 12 South, Range 12 East In Marana, Arizona

Prepared for:
BCIF Group, LLC
6262 N. Swan Road, Suite 125
Tucson, AZ 85718

Zamo

Submitted December 2, 2005

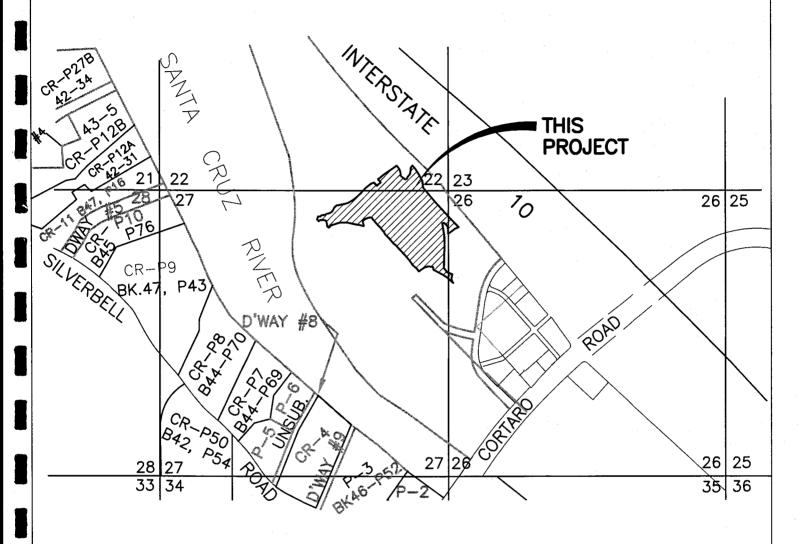
Drainage Report Pursuant to Tentative Plat Approval


Prepared by:

MMLA Psomas
800 E. Wetmore Road, Suite 110
Tucson, AZ 85719

MMLA Psomas 05082-78

TABLE OF CONTENTS


1.0	INTR	ODUCTION	1
2.0	Овје	ECTIVES	3
3.0	Exis	TING CONDITIONS	4
	3.1	HYDROLOGIC ANALYSIS	4
	3.2	EXISTING DRAINAGE STRUCTURES	5
	3.3	EXISTING FLOODPLAINS AND EROSION HAZARD SETBACKS	5
4.0	DEVI	ELOPED CONDITIONS	7
	4.1	On-Site Hydrology	7
	4.2	ROADWAY DESIGN	8
	4.3	INLET DESIGN	8
	4.4	CHANNEL DESIGN	9
	4.5	CULVERT DESIGN	10
	4.6	EROSION PROTECTION	11
	4.7	STORM DRAIN DESIGN	12
	4.8	RETENTION/DETENTION DESIGN	13
	4.9	401/404 Application	13
5.0	Con	CLUSION	14
6.0	REFE	TRENCES	15

		List of Figures	
1		Location Map	2
2		Existing Conditions Map	Pocket Folde
3		Developed Conditions Map	Pocket Folde
4		FIMA FIRM Panel	6
· · · · · · · · ·		List of Tables	
1.	Summary of Hydr	ologic Analysis (Existing Conditions)	4
2.	Summary of Hydr	7	
3.	Summary of Prop	osed Inlet Design	9
4.	Summary of Prop	osed Channel Design	10
5.	Summary of Prop	osed Culvert Design	10
6.	Summary of Prop	osed Splash Pad Design	11
7.	Summary of Prop	osed Splash Pad Design	12
		List of Appendices	
<u>A</u>	ppendix	<u>Title</u>	
1		Hydrologic Analysis (Existing & Developed C	Conditions)
2		Hydraulic Analysis (Developed Conditions)	
3		Hydraulic Structures (Existing Conditions)	

1.0 Introduction

The following text will serve as the Drainage Report for The Pines II. The subdivision, proposed by Southern Pacific Homes will consists of 280 single-family detached homes encompassing 55.3 acres. The overall project will have a density of 5.1 houses per acre. The Pines II will be situated within Continental Reserve Master Planned Community. The Parcel lies with the southeast ¼ of Section 22 and the northwest ¼ of Section 26 and the northeast ¼ of Section 27 all within Township 12 South, Range 12 East. The parcel is bordered along the northern boundary by the I-10 Frontage Road. The Santa Cruz River lies south of the project, though it does not form an actual boundary with the parcel. A golf course immediately borders the development area on all sides. A location map (Figure 1) is provided on Page 2.

FIGURE 1 LOCATION MAP

SCALE 3" = 1 mile

BEING A PORTION OF THE SOUTH 1/2 OF SECTION 22, THE WEST 1/2 OF SECTION 26, AND THE EAST 1/2 OF SECTION 27, T12S, R12E, G&SRB&M, TOWN OF MARANA, PIMA COUNTY, ARIZONA

2.0 OBJECTIVES

As implied in Section 1.0, the proposed subdivision is part of a large master planned community, Continental Reserve. As such previous studies have been submitted and approved by the Town of Marana and needed to be incorporated into the design concept. In addition the design needed to provide a drainage scheme to convey storm runoff safely and efficiently through the property limits.

The following tasks were completed as part of the drainage study for Pines II:

- The peak discharges were calculated as part of the Developed Conditions Analysis outlined in the "Master Drainage Report for Marana Golf, Blocks 1, 3, 4, & 5 and San Xavier Aggregate Pit, Block 2 at Continental Ranch" (Reference 3). These discharges were reviewed and recreated to assure accuracy.
- An on-site field investigation of the drainage structures was performed. This investigation was combined with a review of previous study for the I-10 Corridor to obtain the peak flow entering the property from these sources (Reference 1).
- The peak discharges generated by the development of on-site watersheds were quantified.
- Drainage structures were located and sized for the safe and efficient conveyance of on-site runoff.

The remainder of this report describes the proposed drainage for the site and off-site drainage systems impacted by the proposed project. Maps depicting existing and developed conditions are provided in the pocket folders at the end of the text and supporting calculations are contained within the appendix. This report is being submitted pursuant to Tentative Plat approval.

3.0 EXISTING CONDITIONS

3.1 Hydrologic Analysis

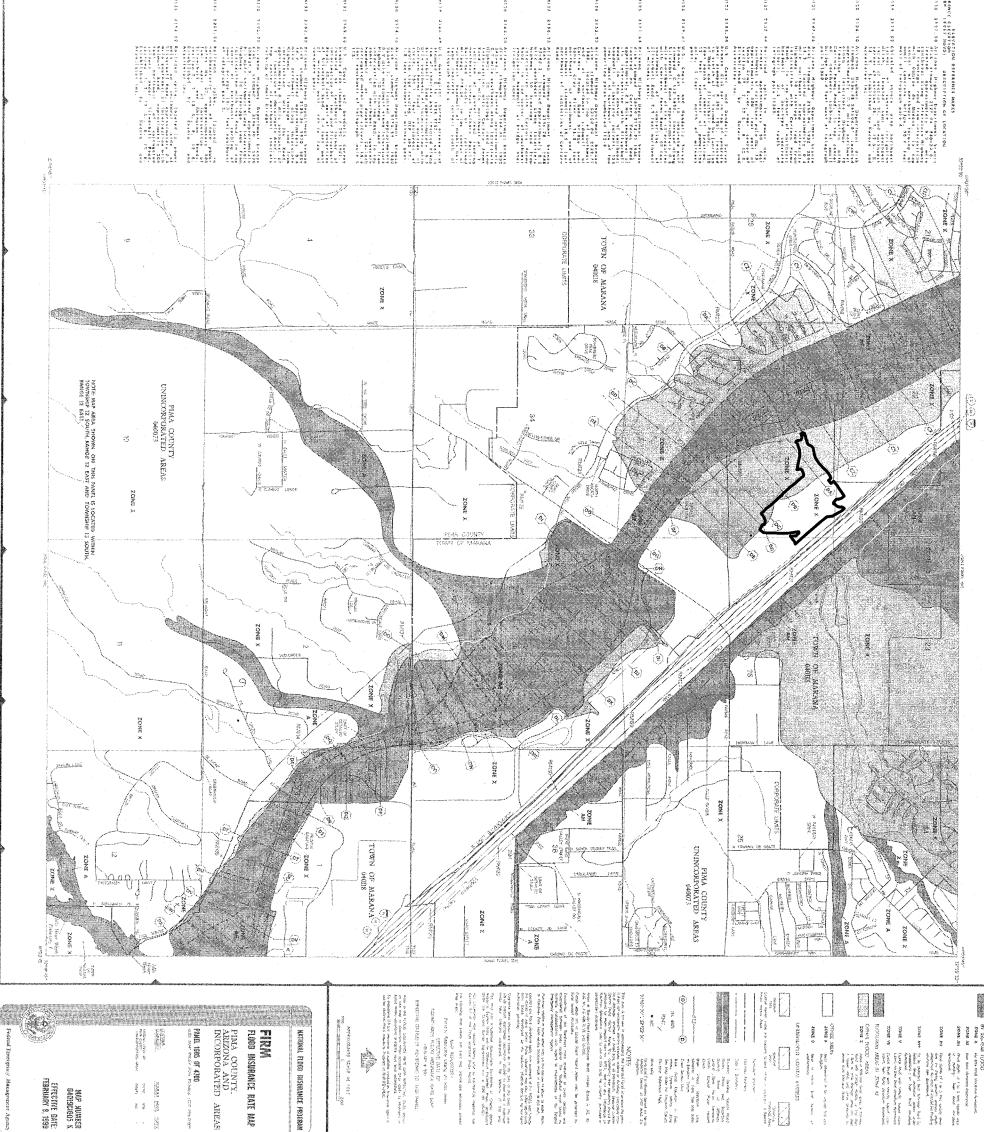
The upper bound of the 90% confidence interval point precipitation frequency estimates from NOAA Atlas 14 was used (Appendix 1) to generate the hydrologic analysis, both existing and developed conditions. Discharge values were obtained using the Pima County Methodology. Initial results illustrated zero cfs for the 2-year event. In order to produce feasible discharges, the 2-year, 6-hour rainfall was increased from 1.38" to 1.43". This modification was utilized in all hydrologic calculations.

The existing conditions scenario presented in this report was recreated to match the previously calculated peak discharges (Reference 2). Due to different values for the input parameters, the generated peak discharges differ between those produced by MMLA Psomas and those from the previous study. Table 1 summarizes the results for the onsite existing conditions hydrology. The offsite hydrology analysis for Pines II was derived from a previous study (Reference 1). Watershed maps from Reference 1 have been reproduced for this report to match the current site conditions and project boundary limits Figure 2. Per these reports, runoff from two off-site culverts impact the project area. The culvert outlets are located at NR3 and NR4. Flow entering the site from NR3 was determined from Reference 1. The maximum capacity for the culvert at NR4 was used to predict the runoff entering the site from this source. Details regarding the existing hydraulic structures are supplied in Appendix 3.

Table 1: Summary of Hydrologic Analysis (Existing Conditions)

Concentration Point	Contributing Watersheds	Area (ac)	Channel Length (ft)	Length to Centroid (ft)	Basin Factor	% Impervious	Mean Slope (%)	Soil Type	T _c (min)	100-year Discharge (cfs)
5	. 5	25.52	1843	922	0.031	45	1.3	100%B	7	86
5*	5	23.80	1160	580	0.031	45	0.7	100%B	7.5	146
6	6	31.44	2480	1240	0.025	69	0.7	100%B	11	130
6*	6	49.4	2800	1400	0.025	69	0.5	100%B	12	300
9	9	12.72	2406	1203	0.033	26	0.9	100%B	16	32
9*	9	16.35	2400	1200	0.033	26	0.5	100%B	16	71

^{*}Reference 2


3.2 Existing Drainage Structures

Two drainage structures and one drainage channel exists within the project limits. One 24" RCP culvert outlet exists at CP NR-4. The capacity of the culvert is 26 cfs. The second existing structure is a 2 cell 6'x3' RCBC located at NR3. The peak flow of the culvert, in breakout conditions, is 1101 cfs. The northeast property boundary has been modified into an earthen drainage swale to direct sheet-flow in the direction of the existing off-site culverts located at NR-1 and NR-3. These structures are described in detail in References 1 and 2, and structure designations are consistent with those assigned in References 1 and 2.

3.3 Existing Floodplains and Erosion Hazard Setbacks

Per the Federal Emergency Management Agency (FEMA), Pines II is located within Zone X (shaded) and Zone X (unshaded) (FIRM Panel 04019C1605 K, February 8, 1999). Zone X (shaded) denotes areas of the 500-year flood; areas of the 100-year flood with average depths of less than one-foot or drainage areas less than one square-mile; and areas protected by levees from the 100-year flood. Zone X (unshaded) denotes areas determined to be outside the 500-year floodplain. Approximately the southwest third of the project area is within Zone X (shaded) and is associated with the Santa Cruz River floodplain limits. The FEMA limits are depicted on Figure 4, FIMA FIRM Panel.

There are no other **FIMA** floodplains located within the project limits. The main channel (Channel 8, 18, 22) carries 1101 cfs, previously defined by the Hydrologic and Hydraulic Report for the I-10 Corridor Study – Pima County Ruthrauff Road to Tangerine Road (Reference #), is controlled by the 2-6'x3' RCBC located at NR3. The flow is conveyed from the upstream watershed and will be contained within the channel banks and adequate freeboard has been provided.

PSOMAS Z Z

800 E. Wetmore Road, Suite 110, Tucson, AZ 85719
Tel (520) 292-2300 (800) 441-5875 Fax (520) 292-1290

www.mmla-psomas.com

FIRM Panel Figure 4 FOR

MAP # 04019C1605K PINES II

EFFECTIVE DATE: February 8, 1999

DATE: 11/01/2005 PROJ NO: 05082-78 SCALE:HORIZ 1" = 2000' VERT 1" = N/A1 약 1

4.0 DEVELOPED CONDITIONS

4.1 On-site Hydrology

The project was divided into nineteen onsite watersheds (Watershed D1-D6, D8-D12, D14, D15, D17-D22) and six offsite watersheds (Watershed OS-1 – OS-6). In general, the runoff from these watersheds will be conveyed in the streets and within storm drain systems. The runoff will be transitioned from the street to the drainage structures via sidewalk scuppers and into various constructed drainage ways. The Pima County Rational Method was used to calculate peak discharges from onsite watersheds and at successive concentration points. The delineated watersheds and concentration points are shown on Figure 3. Appendix 2 contains supporting calculations. Table 3 summarizes the 100-year peak discharges under developed conditions.

Table 2: Summary of Hydrologic Analysis (Developed Conditions)

Concentration Point	Contributing Watersheds	Area (ac)	Channel Length (ft)	Length to Centroid (ft)	Basin Factor	% Impervious	Mean Slope (%)	Soil Type	T _c (min)	100-year Discharge (cfs)
D 1	D1	6.87	967	484	0.022	60	0.5	100%B	6	34
D2	D2	0.44	136	69	0.035	0	0.5	100%B	5	1.3
D2	D1,D2,OS-1, NR-4*	16.36	2066	1033	0.029 25		0.5	100%B	16	66
D3	D3	0.26	288	144	0.035	0	0.5	100%B	6	0.7
D4	D4	4.04	546	273	0.022	60	0.5	100%B	5	21
D4	D3,D4, OS-6	4.53	843	422	0.027	54	0.5	100%B	7	20
D5	D5	0.50	435	218	0.035	0	0.5	100%B	8	1.2
D5	D3,D4,D5, OS-6	5.03	1278	639	0.030	48	0.5	100%B	11	18
D6	D6	5.04	821	411	0.022	60	0.5	100%B	5	26
D7	D3,D4,D5,D6, OS-6	10.07	1529	764	0.033	54	0.5	100%B	13	35
D8	D8	1.65	475	238	0.035	0	0.5	100%B	8	4
D8	NR-3			Based on Res	ults Listed in	the I-10 Corrido	r Study			1101
D9	D9	0.51	320	160	0.025	100	0.5	100%B	5	3
D10	D10	2.44	516	258	0.022	60	0.5	100%B	5	13
D11	D11	0.34	230	115	0.035	0	0.5	100%B	. 5	1.0
D11	D10,D11	2.78	746	373	0.026	53	0.5	100%B	6	13
D12	D12	2.81	591	296	0.022	60	0.5	100%B	5	15
D13	D10,D11,D12	5.59	956	478	0.025	56	0.5	100%B	7	26
D14	D14	3.25	497	249	0.022	60	0.5	100%B	5	17
D15	D15	5.26	888	444	0.022	60	0.5	100%B	6	26
D15	D15,OS-2	5.72	1033	517	0.024	55	0.5	100%B	7	26
D16	D14, D15, OS-2	8.97	1117	559	0.025	57	0.5	100%B	8	39
D17	D17	3.60	627	314	0.022	60	0.5	100%B	5	19

Concentration Point	Contributing Watersheds	Area (ac)	Channel Length (ft)	Length to Centroid (ft)	Basin Factor	% Impervious	Mean Slope (%)	Soil Type	T _c (min)	100-year Discharge (cfs)
D17	D17, OS-5	4.04	924	463	0.026	53	0.5	100%B	7	18
D18	D18			578	0.035	0	0.5	100%B	15	- 7
D18	NR-3			Based on Res	ults Listed in	the I-10 Corrido	r Study			1101
D19	D19	3.43	902	451	0.022	60	0.5	100%B	6	17
D20	D20	5.40	587	294	0.022	60	0.5	100%B	5	28
D21	D21	0.32	132	66	0.035	0	0.5	100%B	5	0.9
D21	D20, D21	5.72	719	360	0.024	57	0.5	100%B	5	29
D22	D22	0.79	244	122	0.035	0	0.5	100%B	5	2
D22	NR-3			Based on Res	ults Listed in	the I-10 Corrido	r Study			1101
OS-1	OS-1	9.05	963	482	0.035	0	0.5	100%B	13	18
OS-1	OS-1, NR-4*	9.05	963	482	0.035	. 0	0.5	100%B	13	44
OS-2	OS-2	0.46	145	73	0.035	0	0.5	100%B	5	1.3
OS-3	OS-3	6.62	903	452	0.035	0	0.5	100%B	13	. 13
OS-3	NR-3		Based on Results Listed in the I-10 Corridor Study							
OS-4	OS-4	1.65 870		435	0.035	0	0.5	100%B	13	3
OS-5	OS-5	0.44	297	149	0.035	0	0.5	100%B	6	1.2
OS-6	OS-6	0.23	101	51 0.035 0 0				100%B	6	0.6
NR-4	NR-4	NR-4 Based on the Culvert Capacity (Assuming 4-feet of Available Headwater)								26

4.2 Roadway Design

Approximately 2.00 miles of paved roadway will be constructed with the project. The typical 55-foot right-of-way will include two 16-foot travel lanes, 5-inch high rolled curbs and a 5-foot sidewalk. The typical roadway will consist of super-elevated sections with a continuous 1% cross-slope.

To demonstrate that the roads have sufficient capacity to convey the 100-year runoff for a variety of slopes, rating tables were created for the typical street sections. The rating table and a typical cross-section are included in Appendix 2. Where storm water approaches a low point from two directions, the runoff component on each side was determined independently to verify adequate street capacity.

4.3 Inlet Design

As part of the drainage design, runoff from the roadways will be discharged into drainage channel via ten concrete sidewalk scuppers and four depressed curbs. These structures, located within the interior of the project, were sized to convey the entire 100-year event below the curb line using the weir equation and assuming a 6-inch total opening height.

Table 4 summarizes the hydraulic analysis for the inlets. The locations of the scuppers and depressed curb listed in Table 3 are indicated by concentration points on Figure 4. The widths for scuppers listed in Table 3 represent the width of the effective opening. The final inlet sizes will be shown on both paving and grading plans. Calculations for the required effective opening length are included in Appendix 2.

Table 3: Summary of Proposed Inlet Design

Concentration Point	Q _{des} (cfs))	Depth of Opening (ft)	Type of Opening	Effective Opening (ft)
D1	34	0.50	Scupper	15
D3	1	0.50	Depressed Curb	1
D4	- 20	0.50	Scupper	9
D6	26	0.50	Scupper	12
D9	3	0.50	Depressed Curb	4
D10	13	0.50	Scupper	6
D12	15	0.50	Scupper	7
D14	17	0.42	Catch Basin	14
D15	26	0.50	Scupper	12
D17	18	0.50	Scupper	8
D19	17	0.50	Scupper	8
D20	28	0.50	Scupper	13
OS-2	1	0.50	Depressed Curb	1
OS-4	3	0.50	Depressed Curb	4
OS-5	1	0.50	Depressed Curb	1
OS-6	1	0.50	Depressed Curb	1

4.4 Channel Design

Twelve channels will be constructed within the project limits as part of the drainage design. The channels were sized using Manning's Equation. Four of the channels will be rock-lined with Filter Fabric. Table 5 summarizes the hydraulic analysis for channels designated by the concentration points shown on Figure 3. Calculation sheets and freeboard calculations are provided in Appendix 2.

Table 4: Summary of Proposed Channel Design

Channel	Concentratio n Point	100-year Discharg e (cfs)	Flow Depth (ft)	Manning's "N"	Slope (%)	Side Slope (H:V)	Channel Depth (ft)	Channel Bottom Width (ft)	Channel Top Width (ft)	Flow Velocity (fps)
1*	OS-1	44	1.75	0.035	0.5	3:1	2.0	3	15	3.05
2	D3	1	0.29	0.030	0.5	12:1	0.5	0	7	0.97
3	D2	66	1.61	0.030	1.0	6:1	1.75	0	21	4.25
4	D5	18	0.76	0.030	1.0	12:1	1.0	0	24	2.59
5*	D7	35	1.34	0.035	1.0	3:1	1.75	3	13.5	3.72
6	D11	13	0.67	0.030	1.0	12:1	1.0	0	24	2.39
7	OS-5	1	0.29	0.030	0.5	12:1	0.5	0	6	0.97
8*	D13	26	1.16	0.035	1.0	3:1	1.5	3	12	3.44
9*	D16	39	1.41	0.035	1.0	3:1	1.75	3	13.5	3.83
10*	D17	18	0.97	0.035	1.0	3:1	1.5	3	12	3.12
11	D21	29	0.91	0.030	0.5	12:1	1.25	0	30	2.92
12	D8	1101	2.32	0.030	0.39	8:1	2.80	80	125	4.82
12	D18	1101	2.32	0.030	0.39	8:1	2.80	80	125	4.82
12	D22	1101	2.32	0.030	0.39	8:1	2.80	80	125	4.82

^{*}Rock Lined -D50 = 6" T = 1' with Filter Fabric

4.5 Culvert Design

Three culvert crossings will be constructed as part of the drainage design to convey runoff from the constructed channels beneath proposed roadways. The first culvert will be constructed at CP D5 to convey runoff to the rock-lined channel at CP D7. The second will be constructed at CP D8 to convey runoff to the earthen channel u/s of CP D18. The third will be constructed at CP D18 to convey runoff to the earthen channel u/s of CP D22. The hydraulic analysis of these culverts is included in Appendix 2 and is summarized in Table 6. Rip-rap bank protection will be placed at the outfall of Culverts 2 and 3, as discussed in Section 4.6 (Erosion Protection). Culvert hydraulics were analyzed using a computer program based on methods presented in the Federal Highway Administration Hydraulic Design Series No. 5 (HDS-5).

Table 5: Summary of Proposed Culvert Design

Culvert	Conc. Point u/s Location	Culvert Type	Q _{des.} (cfs)	Slope (%)	Length (ft)	Req. HW (ft)	Vel. (fps)
1	D5	1-24 RCP	18	1.0	65	2.64	7.99
2	D8	5-10' x 4' RCBC	1101	0.71	55	3.78	11.48
3	D18	5-10' x 4' RCBC	1101	0.71	55	3.78	11.48

4.6 Erosion Protection

To prevent scour at the outlets of the various drainage structures located within the project limits, additional erosion protection will be constructed within the drainage channels and basins constructed as part of the infrastructure. A total of twelve splash pads will be constructed at scupper, culvert, storm drain and channel outlets.

Using West Consultant's software program based on the Army Corps of Engineers HEC-11 design package, the minimum rock size for the splash pads is 6 inches. The splash pads are summarized in Table 7 and depicted on Figure 4. The calculation sheets are provided in Appendix 2.

Table 6: Summary of Proposed Splash Pad Design

Splash Pad ID	Conc. Point(s)	Q _{des} (cfs)	Depth of Opening (ft)	Type of Opening	Mean Rock Size (d ₅₀)	Width of Splash Pad (ft)	Length of Splash Pad (ft)	Thickness of Splash Pad (ft)
1	D1	44	3	3' RCP, Scupper	6"	30	26	1.0
2	D2	40	0.5	Channel	6"	42	9	1.0
. 3	D4	20	0.5	Scupper	6"	27	10	1.0
4	D7	35	1.34	Channel	6"	33	9	1.0
5	D8, D9	1101	4	5 - 4' x 10 RCBC	9"	120	33	1.5
6	D10	13	0.5	Scupper	6"	39	5	1.0
7	D13	13	2	2' RCP	6"	6	14	1.0
8	D16	17	2	2' RCP	6"	6	18	1.0
9	D17	18	0.5	Scupper	6"	36	5	1.0
10	D18,	1101	4	5 - 4' x 10 RCBC,	9"	120	33	1.0
	D19			Scupper				
11	D20	28	0.5	Scupper	6"	56	5	1.0
12	D22	1101	2.32	Channel	6"	250	18	1.0

Note: All splash pads will be underlined with filter fabric.

Smaller Rock may be used, with a minimum d₅₀ equal to 6", if the splash pad is wire tied.

4.7 Storm Drain Design

As part of the drainage design, three storm drain systems will be constructed within the project limits. The preliminary storm drain calculations assumed a consistent slope of 0.5% and 1.0-foot of cover. Table 8 summarizes the storm drain design.

System 1 will capture the runoff at CP OS-1. The system includes a headwall at the inlet and four 36" segments. The second segment will have a curvature radius of 532.9". The flow will be conveyed west then north and is ultimately discharged d/s of CP D1 onto a splash pad.

System 2 will capture the runoff at CP D11. The system includes a headwall at the inlet and two 24" segments. The flow will be conveyed west then south and is ultimately discharged u/s of CP D13 onto a rock-lined channel.

System 3 will capture the runoff at CP D14. The system includes a catch basin at the inlet and three 24" segments. The flow will be conveyed southwest then northwest and is ultimately discharged u/s of CP D16 onto a rock-lined channel.

Table 7: Summary of Proposed Storm Drain Design

Pipe	C.P. Downstream	C.P. Upstream	Pipe Diameter	Pipe Length	Inlet Length	Q _{des} (cfs)	Slope (%)	V _{pipe} (fps)
			System 1 CF	OS-1/CP D1				
SD1	CP D1 (Outlet)	MH1	36	15		44	0.5	6.23
SD2	MH1	MH2	36	305		44	0.5	6.23
SD3	MH2	МН3	36	89		44	0.5	6.23
SD4	MH4	OS-1	36	27		44	0.5	6.23
			System 2 CP	D11/ CP D13				
SD5	CP D13 (Outlet)	MH 5	24	15		13	0.5	4.14
SD6	MH 5	CP D11	24	110		13	0.5	4.14
			System 3 CP	D16/ CP D14				
SD14	CP D16 (Outlet)	MH 6	24	34		17	0.5	5.41
SD15	MH 6	MH 7	24	261		17	0.5	5.41
SD16	MH 7	CP D14	24	372	15'	17	0.5	5.41

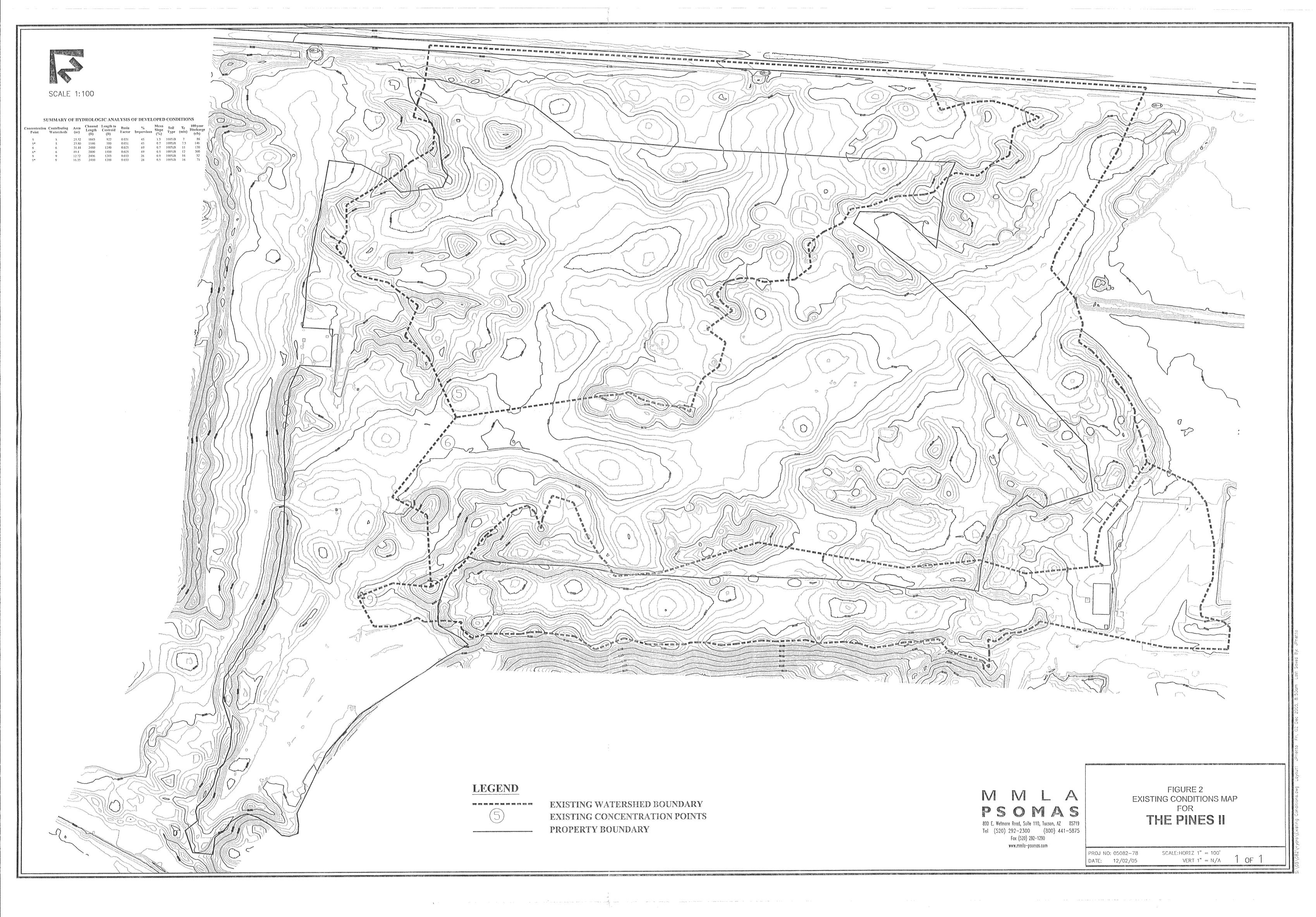
4.8 Retention/Detention Design

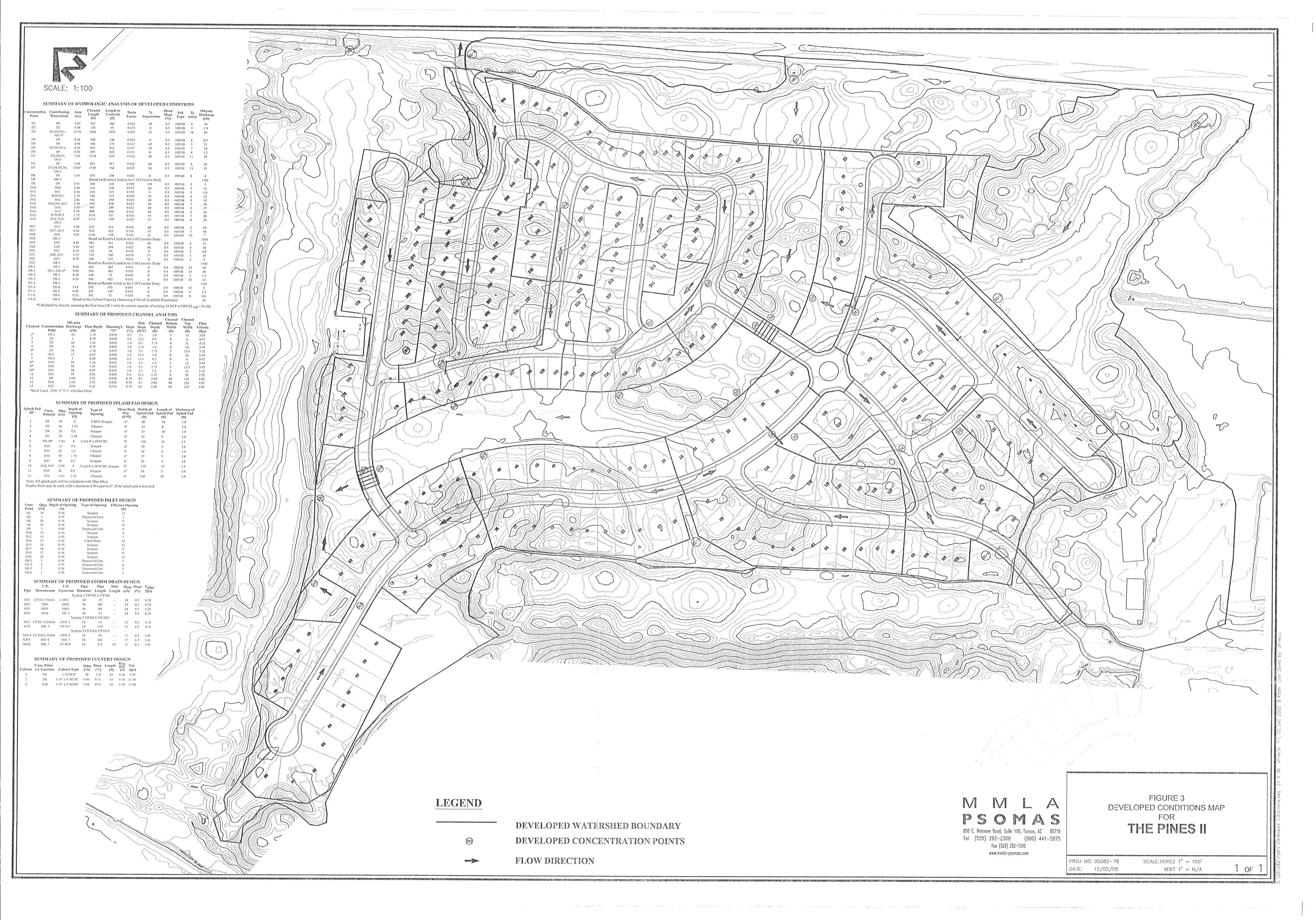
Due to the close proximity of the project to a major river, no detention/retention structures will be constructed as part of the development of Pines II. It is the intent of this development to discharge all flows to Santa Cruz River before the peak discharge from the upstream watershed approaches the development. By not disturbing the peak discharge of the upstream watershed, designated by the U.S. Army Corps of Engineers. Per this designation, it was determined that development will not disturb any jurisdictional waters.

4.9 401/404 Application

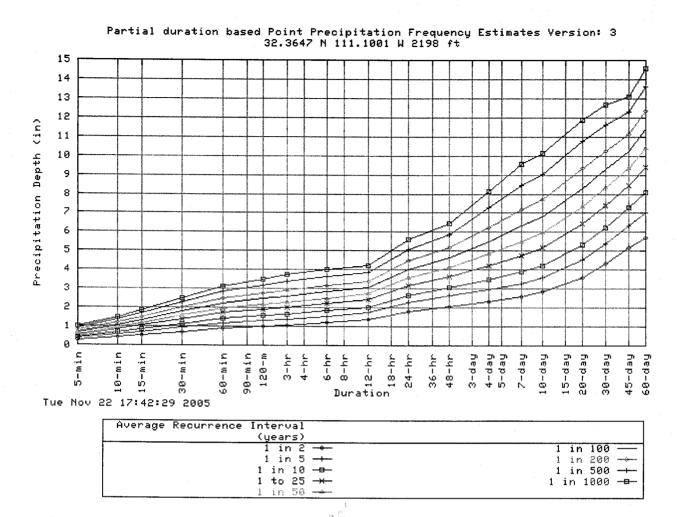
There are no jurisdictional watercourses for the Pines II, designated by the U.S. Army Corps of Engineers. Per this designation, it was determined that development will not disturb any jurisdictional waters.

As part of NPDES processes, a SWPPP will be submitted to The Town of Marana prior to the commencement of the construction portion of this project for review. A copy of the NOI will be submitted to both the Arizona Department of Environmental Quality and the Town of Marana.


5.0 Conclusion


The Pines II is located southwest of the Interstate-10 and northeast of the Santa Cruz River, near the intersection of Sections 22, 26, and 27 of Township 12S, Range 12E. The development will have an approximate density of 3.7 houses per acre and approximately 2.00 miles of paved roadway.

The hydrology and hydraulics have been analyzed and designed such that storm runoff off will be conveyed safely and effectively through the development area. Interior streets will convey storm water to scuppers, depressed curbs or catch basins which will discharge into constructed channels. The channels will be earthen or rock-lined, with side-slopes ranging from 3:1 to 12:1, and bottom widths of 0', 3' and 80'. Three storm drain systems and three culverts will be utilized to convey flow through the development. All flow generated by Pines II will discharge through concentration point D22 and ultimately into the Santa Cruz River. The measures discussed in this report and presented on the Tentative Plat were designed in accordance with Town of Marana Standards.


6.0 REFERENCES

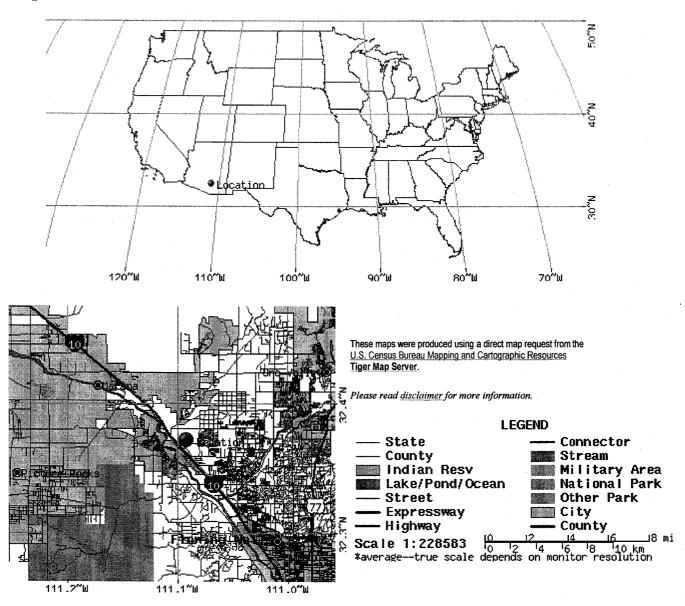
- 1) Arizona Department of Transportation, Hydrologic and Hydraulic Report for I-10 Corridor Study Pima County, Ruthrauff Road to Tangerince Road, March 1991
- 2) The WLB Group, Inc., Master Drainage Report for Marana Golf, Block 1, 3, 4 & 5, and The San Xavier Aggregate Pit, Block 2 at Continental Ranch.
- 3) Pima County Department of Transportation and Flood Control District; Hydrology Manual for Engineering Design and Floodplain Management within Pima County, Arizona, September 1979.

RAINFALL DATA

Confidence Limits -

				*									interv nches					
ARI** (years)	5 min	10 min	15 min	30 min	60 min	120 min	3 hr	6 hr	12 hr	24 hr	48 hr	4 day	7 day	10 day	20 day	30 day	45 day	60 day
2	0.32	0.49	0.60	0.81	1.01	1.15	1.21	A	1.55	2:16	2.43	2.65	2.99	3.27	4.10	4.81	5.67	6.27
5	0.42	0.65	0.80	1.08	1.33	1.50	1.56	1.74	1.94	2.71	3.05	3.36	3.79	4.13	5.18	5.97	7.00	7.72
10	0.50	0.77	0.95	1.28	1.58	1.77	1.84	2.04	2.25	3.15	3.57	3.96	4.47	4.87	6.07	6.92	8.01	8.83
25	0.61	0.94	1.16	1.56	1.93	2.15	2.24	2.46	2.68	3.78	4.28	4.82	5.51	5.95	7.33	8.22	9.33	10.31
50	0.70	1.07	1.32	1.78	2.21	2.45	2.56	2.80	3.04	4.28	4.87	5.54	6.42	6.86	8.36	9.26	10.32	11.43
100	0.80	1.21	1.50	2.02	2.50	2.77	2.91		3.40	457 (0)	5.46	6.32	7.40	7.88	9.52	10.39	11.34	12.55
200	0.89	1.36	1.68	2.27	2.81	3.10	3.29	3.56	3.81	5.38	6.09	7.20	8.48	8.97	10.72	11.53	12.36	13.66
500	1.03	1.56	1.94	2.61	3.23	3.59	3.85	4.15	4.37	6.18	6.96	8.48	10.06	10.58	12.48	13.14	13.74	15.20
1000	1.13	1.72	2.13	2.87	3.56	3.98	4.30	4.64	4.84	6.80	7.71	9.57	11.47	12.02	13.97	14.47	14.81	16.37

^{*} The upper bound of the confidence interval at 90% confidence level is the value which 5% of the simulated quantile values for a given frequency are greater than.


^{**} These precipitation frequency estimates are based on a <u>partial duration series</u>. **ARI** is the Average Recurrence Interval. Please refer to the <u>documentation</u> for more information. NOTE: Formatting prevents estimates near zero to appear as zero.

	
* Lower bound of the 90% confidence interval	l
	1
Precipitation Frequency Estimates (inches)	

ARI**	5	10	15	30	60	120	3	6	12	24	48	4	7	10	20	30	45	60
(years)	min	min	min	min	min	min	hr	hr	hr	hr	hr	day	day	day	day	day	day	day
2	0.25	0.38	0.47	0.64	0.79	0.91	0.96	1.10	1.26	1.58	1.83	2.04	2.27	2.49	3.20	3.92	4.69	5.22
5	0.33	0.51	0.63	0.84	1.05	1.19	1.24	1.39	1.57	1.96	2.29	2.59	2.88	3.14	4.03	4.85	5.76	6.42
10	0.39	0.60	0.74	1.00	1.24	1.40	1.45	1.62	1.82	2.28	2.65	3.04	3.39	3.69	4.70	5.61	6.57	7.35
25	0.47	0.72	0.90	1.21	1.49	1.68	1.75	1.93	2.15	2.71	3.13	3.66	4.12	4.45	5.62	6.62	7.62	8.54
50	0.53	0.81	1.01	1.35	1.68	1.89	1.96	2.17	2.39	3.04	3.52	4.17	4.72	5.07	6.35	7.38	8.39	9.39
100	0.59	0.90	1.12	1.50	1.86	2.10	2.18	2.40	2.63	3.38	3.90	4.68	5.35	5.73	7.11	8.14	9.13	10.24
200	0.65	0.99	1.23	1.65	2.04	2.30	2.40	2.64	2.88	3.72	4.30	5.22	6.01	6.41	7.89	8.95	9.84	11.04
500	0.72	1.10	1.36	1.83	2.27	2.56	2.69	2.95	3.19	4.18	4.83	5.95	6.92	7.32	8.90	9.93	10.74	12.05
1000	0.77	1.18	1.46	1.96	2.43	2.75	2.91	3.19	3.42	4.53	5.21	6.50	7.64	8.04	9.66	10.66	11.38	12.74

^{*}The lower bound of the confidence interval at 90% confidence level is the value which 5% of the simulated quantile values for a given frequency are less than.

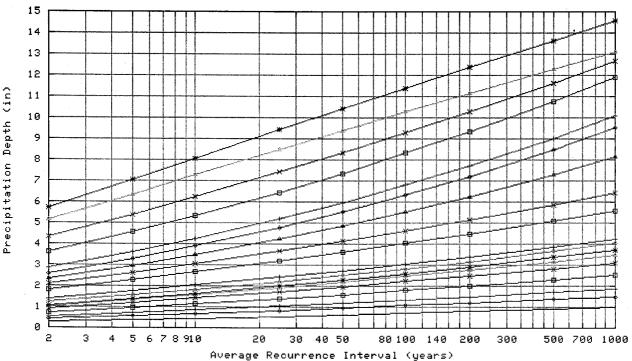
Maps -

^{**} These precipitation frequency estimates are based on a partial duration maxima series. ARI is the Average Recurrence Interval.

Please refer to the documentation for more information. NOTE: Formatting prevents estimates near zero to appear as zero.

POINT PRECIPITATION FREQUENCY ESTIMATES FROM NOAA ATLAS 14

Arizona 32.3647 N 111.1001 W 2198 feet


from "Precipitation-Frequency Atlas of the United States" NOAA Atlas 14, Volume 1, Version 3
G.M. Bonnin, D. Todd, B. Lin, T. Parzybok, M. Yekta, and D. Riley
NOAA, National Weather Service, Silver Spring, Maryland, 2003

Extracted: Tue Nov 22 2005

Confidence Limits Seasonality Location Maps Other Info. GIS data Maps Help																		
	Precipitation Frequency Estimates (inches)																	
ARI* (years)	5 min	10 min	15 min	30 min	60 min	120 min	3 hr	6 hr	12 hr	24 hr	48 hr	4 day	7 day	10 day	20 day	30 day	45 day	60 day
2	0.28	0.43	0.53	0.71	0.88	1.02	1.07	1.23	1.39	1.82	2.08	2.32	2.59	2.85	3.61	4.33	5.15	5.71
5	0.38	0.57	0.71	0.95	1.18	1.33	1.38	1.55	1.74	2.29	2.62	2.94	3.29	3.60	4.56	5.38	6.35	7.04
10	0.45	0.68	0.84	1.14	1.41	1.57	1.64	1.83	2.02	2.67	3.05	3.47	3.89	4.24	5.34	6.24	7.27	8.06
25	0.55	0.83	1.03	1.39	1.72	1.92	2.00	2.21	2.42	3.19	3.66	4.22	4.77	5.17	6.45	7.41	8.47	9.41
50	0.62	0.95	1.18	1.58	1.96	2.19	2.28	2.51	2.73	3.60	4.14	4.84	5.51	5.95	7.36	8.33	9.37	10.41
100	0.70	1.07	1.33	1.79	2.22	2.47	2.59	2.83	3.06	4.03	4.63	5.51	6.32	6.80	8.31	9.28	10.27	11.39
200	0.79	1.20	1.49	2.00	2.48	2.76	2.91	3.17	3.39	4.48	5.16	6.24	7.20	7.71	9.33	10.26	11.14	12.37
500	0.90	1.37	1.70	2.28	2.83	3.16	3.37	3.64	3.86	5.09	5.86	7.28	8.47	9.02	10.75	11.60	12.28	13.63
1000	0.98	1.50	1.86	2.50	3.10	3.47	3.73	4.04	4.23	5.58	6.42	8.13	9.55	10.12	11.90	12.65	13.12	14.56

Text version of table * These precipitation frequency estimates are based on a <u>partial duration series</u>. ARI is the Average Recurrence Interval. Please refer to the <u>documentation</u> for more information. NOTE: Formatting forces estimates near zero to appear as zero.

Partial duration based Point Precipitation Frequency Estimates Version: 3 32.3647 N 111.1001 W 2198 ft

Tue Nov 22 17:42:29 2005

Duration			
5-min	120-n	48-hr -*-	30-day -× -
10-min 	3-hr -*-	4-day 	45-daū ——
15-min →	6-hr 	7-daų́ -+-	60-daÿ -*-
30-min -□	12-hr 	10-daų́ -+-	
60-min -×	24-hr 	20-daų -b-	

HYDROLOGIC CALCULATIONS

EXISTING CONDITIONS

PROJECT NAME AND LOCATION: THE PINES II (Existing Conditions)

DRAINAGE CONCENTRATION POINT: 5 (WS 5)

WATERSHED AREA (A): 25.52 acres

LENGTH OF WATERCOURSE (Lc): 1843. ft

LENGTH TO CENTER OF GRAVITY (Lca): 922. ft

INCREMENTAL CHANGE IN LENGTH (Li) - ft INCREMENTAL CHANGE IN ELEV (Hi) - ft

1843. 24.0

MEAN SLOPE (Sc): .0130 ft BASIN FACTOR (Nb): .0310

WATERSHED TYPE(S): Existing

RAINFALL VALUES

		EVENT									
	2-YR	5-YR	10-YR	25-YR	50-YR	100-YR					
P 1	.88	1.17	1.36	1.61	1.84	2.06					
P 2	1.07	1.40	1.63	1.91	2.18	2.43					
P 3	1.19	1.56	1.80	2.12	2.40	2.69					
P 6	1.43	1.85	2.14	2.50	2.83	3.16					
P24	2.16	2.81	3.25	3.81	4.32	4.82					

SOIL GROUPS

47. % B, CN= 82, COVER TYPE= DESERT BRUSH , COVER DENSITY= 25 % 53. % B, CN= 74, COVER TYPE= URBAN LAWNS , COVER DENSITY= 80 %

IMPERVIOUS COVER= 45. %

			EVI	ENT		
	2-YR	5-YR	10-YR	25-YR	50-YR	100-YR
RUNOFF SUPPLY RATE (q/i):					.564	.600
Tc (FUNCTION OF i) :	22.56	21.74	21.04	20.24	19.64	19.17
SOLUTION OF Tc (MINUTES):	18	15	13	12	10	10
RAINFL INT. @ Tc (IN/HR):	1.850	2.667	3.325	4.058	4.957	5.557
RUNOFF RATE @ Tc (IN/HR):	.738	1.168	1.580	2.125	2.796	3.333
PEAK DISCHARGE (CFS) :	19.	30.	41.	55.	72.	86.

PROJECT NAME AND LOCATION: THE PINES II (Existing Conditions)

DRAINAGE CONCENTRATION POINT: 6 (WS 6)

WATERSHED AREA (A): 31.44 acres

LENGTH OF WATERCOURSE (Lc): 2480. ft

LENGTH TO CENTER OF GRAVITY (Lca): 1240. ft

INCREMENTAL CHANGE IN LENGTH (Li) - ft INCREMENTAL CHANGE IN ELEV (Hi) - ft

2480. 17.0

MEAN SLOPE (Sc): .0069 ft BASIN FACTOR (Nb): .0250

WATERSHED TYPE(S): Existing

RAINFALL VALUES

	EVENT									
	2-YR	5-YR	10-YR	25-YR	50-YR	100-YR				
P 1	.88	1.17	1.36	1.61	1.84	2.06				
P 2	1.07	1.40	1.63	1.91	2.18	2.43				
P 3	1.19	1.56	1.80	2.12	2.40	2.69				
P 6	1.43	1.85	2.14	2.50	2.83	3.16				
P24	2.16	2.81	3.25	3.81	4.32	4.82				

SOIL GROUPS

76. % B, CN= 82, COVER TYPE= DESERT BRUSH , COVER DENSITY= 25 % 24. % B, CN= 74, COVER TYPE= URBAN LAWNS , COVER DENSITY= 80 %

IMPERVIOUS COVER= 69. %

		EVENT				
	2-YR	5-YR	10-YR	25-YR	50-YR	100-YR
RUNOFF SUPPLY RATE (q/i):					.740	.763
Tc (FUNCTION OF i) :	23.77	23.14	22.73	22.29	21.95	21.68
SOLUTION OF Tc (MINUTES):	19	16	14	13	12	11
RAINFL INT. @ Tc (IN/HR):	1.797	2.596	3.230	3.929	4.627	5.372
RUNOFF RATE @ Tc (IN/HR):	1.090	1.683	2.189	2.799	3.422	4.099
PEAK DISCHARGE (CFS) :	35.	53.	69.	89.	108.	130.

PROJECT NAME AND LOCATION: THE PINES II (Existing Conditions)

DRAINAGE CONCENTRATION POINT: 9 (WS 9)

WATERSHED AREA (A): 12.72 acres

LENGTH OF WATERCOURSE (Lc): 2406. ft

LENGTH TO CENTER OF GRAVITY (Lca): 1203. ft

INCREMENTAL CHANGE IN LENGTH (Li) - ft INCREMENTAL CHANGE IN ELEV (Hi) - ft

2406. 21.0

MEAN SLOPE (Sc): .0087 ft BASIN FACTOR (Nb): .0330

WATERSHED TYPE(S): Existing

RAINFALL VALUES

	EVENT									
	2-YR	5-YR	10-YR	25-YR	5.0-YR	100-YR				
P 1	.88	1.17	1.36	1.61	1.84	2.06				
P 2	1.07	1.40	1.63	1.91	2.18	2.43				
P 3	1.19	1.56	1.80	2.12	2.40	2.69				
P 6	1.43	1.85	2.14	2.50	2.83	3.16				
P24	2.16	2.81	3.25	3.81	4.32	4.82				

SOIL GROUPS

100. % B, CN= 82, COVER TYPE= DESERT BRUSH , COVER DENSITY= 25 %

IMPERVIOUS COVER= 26. %

			EVI	ENT		
	2-YR	5-YR	10-YR	25-YR	50-YR	100-YR
RUNOFF SUPPLY RATE (q/i):	.235	.309	.366	.435	.491	.539
Tc (FUNCTION OF i) :	40.89	36.65	34.24	31.94	30.44	29.33
SOLUTION OF Tc (MINUTES):	38	28	24	20	18	16
RAINFL INT. @ Tc (IN/HR):	1.198	1.918	2.453	3.205	3.856	4.569
RUNOFF RATE @ Tc (IN/HR):	.281	.592	.897	1.394	1.893	2.461
PEAK DISCHARGE (CFS) :	3.60	7.59	11.51	17.88	24.27	31.56

DEVELOPED CONDITIONS

DRAINAGE CONCENTRATION POINT: D1 (WS D1)

WATERSHED AREA (A): 6.87 acres

LENGTH OF WATERCOURSE (Lc): 967. ft

LENGTH TO CENTER OF GRAVITY (Lca): 484. ft

INCREMENTAL CHANGE IN LENGTH (Li) - ft INCREMENTAL CHANGE IN ELEV (Hi) - ft

967. 4.8

MEAN SLOPE (Sc): .0050 ft BASIN FACTOR (Nb): .0220

WATERSHED TYPE(S): Moderate Urban

RAINFALL VALUES

	EVENT									
	2-YR	5-YR	10-YR	25-YR	50-YR	100-YR				
P 1	.88	1.17	1.36	1.61	1.84	2.06				
P 2	1.07	1.40	1.63	1.91	2.18	2.43				
P 3	1.19	1.56	1.80	2.12	2.40	2.69				
P 6	1.43	1.85	2.14	2.50	2.83	3.16				
P24	2.16	2.81	3.25	3.81	4.32	4.82				

SOIL GROUPS

100. % B, CN= 82, COVER TYPE= DESERT BRUSH , COVER DENSITY= 25 %

IMPERVIOUS COVER= 60. %

RAINFALL/RUNOFF AND PEAK DISCHARGE DATA

FUENT

			E V I	21/I T		
	2-YR	5-YR	10-YR	25-YR	50-YR	100-YR
RUNOFF SUPPLY RATE (q/i):	.529	.582	.619	.662	.696	.725
Tc (FUNCTION OF i) :	14.25	13.71	13.38	13.02	12.76	12.56
SOLUTION OF Tc (MINUTES):	10	8	8	7	6	6
RAINFL INT. @ Tc (IN/HR):	2.378	3.497	4.074	5.073	6.096	6.833
RUNOFF RATE @ Tc (IN/HR):	1.257	2.035	2.521	3.357	4.241	4.952
PEAK DISCHARGE (CFS) :	8.71	14.09	17.46	23.25	29.37	34.29

DRAINAGE CONCENTRATION POINT: D1 (WS D1, OS-1)

WATERSHED AREA (A): 15.92 acres

LENGTH OF WATERCOURSE (Lc): 1930. ft

LENGTH TO CENTER OF GRAVITY (Lca): 966. ft

INCREMENTAL CHANGE IN LENGTH (Li) - ft INCREMENTAL CHANGE IN ELEV (Hi) - ft

967. 4.8 963. 4.8

MEAN SLOPE (Sc): .0050 ft BASIN FACTOR (Nb): .0280

WATERSHED TYPE(S): Moderate Urban

RAINFALL VALUES

			E/	JENT		
	2-YR	5-YR	10-YR	25-YR	50-YR	100-YR
P 1	.88	1.17	1.36	1.61	1.84	2.06
P 2	1.07	1.40	1.63	1.91	2.18	2.43
P 3	1.19	1.56	1.80	2.12	2.40	2.69
P 6	1.43	1.85	2.14	2.50	2.83	3.16
P24	2.16	2.81	3.25	3.81	4.32	4.82

SOIL GROUPS

100. % B, CN= 82, COVER TYPE= DESERT BRUSH , COVER DENSITY= 25 %

IMPERVIOUS COVER= 26. %

	EVENT							
	2-YR	5-YR	10-YR	25-YR	50-YR	100-YR		
RUNOFF SUPPLY RATE (q/i):	.235	.309	.366	.435	.491	.539		
Tc (FUNCTION OF i) :	37.98	34.04	31.80	29.67	28.27	27.24		
SOLUTION OF Tc (MINUTES):	35	26	. 22	18	16	15		
RAINFL INT. @ Tc (IN/HR):	1.260	2.000	2.575	3.382	4.076	4.693		
RUNOFF RATE @ Tc (IN/HR):	.296	.617	.942	1.471	2.001	2.528		
PEAK DISCHARGE (CFS) :	4.74	9.90	15.12	23.61	32.11	40.57		

DRAINAGE CONCENTRATION POINT: D2 (WS D2)

WATERSHED AREA (A): .44 acres

LENGTH OF WATERCOURSE (Lc): 136. ft

LENGTH TO CENTER OF GRAVITY (Lca): 69. ft

INCREMENTAL CHANGE IN LENGTH (Li) - ft INCREMENTAL CHANGE IN ELEV (Hi) - ft

136. .7

MEAN SLOPE (Sc): .0050 ft BASIN FACTOR (Nb): .0350

WATERSHED TYPE(S): VALLEY

RAINFALL VALUES

	EVENT								
	2-YR	5-YR	10-YR	25-YR	50-YR	100-YR			
P 1	.88	1.17	1.36	1.61	1.84	2.06			
P 2	1.07	1.40	1.63	1.91	2.18	2.43			
P 3	1.19	1.56	1.80	2.12	2.40	2.69			
P 6	1.43	1.85	2.14	2.50	2.83	3.16			
P24	2.16	2.81	3.25	3.81	4.32	4.82			

SOIL GROUPS

100. % B, CN= 82, COVER TYPE= DESERT BRUSH , COVER DENSITY= 25 %

IMPERVIOUS COVER= 0. %

RAINFALL/RUNOFF AND PEAK DISCHARGE DATA

EVENT

		E A ETA I				
	2-YR	5-YR	10-YR	25-YR	50-YR	100-YR
RUNOFF SUPPLY RATE (q/i):	.010	.100	.172	.262	.334	.397
Tc (FUNCTION OF i) :	34.54	13.68	10.98	9.29	8.43	7.87
SOLUTION OF Tc (MINUTES):	31	8	6	5	5	5
RAINFL INT. @ Tc (IN/HR):	1.356	3.497	4.524	5.604	6.389	7.162
RUNOFF RATE @ Tc (IN/HR):	.013	.348	.780	1.467	2.135	2.840
PEAK DISCHARGE (CFS) :	.01	.15	.35	.65	.95	1.26

DRAINAGE CONCENTRATION POINT: D2 (WS D1, D2 OS-1)

WATERSHED AREA (A): 16.36 acres

LENGTH OF WATERCOURSE (Lc): 2066. ft

LENGTH TO CENTER OF GRAVITY (Lca): 1033. ft

INCREMENTAL CHANGE IN LENGTH (Li) - ft INCREMENTAL CHANGE IN ELEV (Hi) - ft

967. 4.8 963. 4.8 136. 1.4

MEAN SLOPE (Sc): .0052 ft BASIN FACTOR (Nb): .0290

WATERSHED TYPE(S): Moderate Urban

RAINFALL VALUES

	EVENT							
	2-YR	5-YR	10-YR	25-YR	50-YR	100-YR		
P 1	.88	1.17	1.36	1.61	1.84	2.06		
P 2	1.07	1.40	1.63	1.91	2.18	2.43		
P 3	1.19	1.56	1.80	2.12	2.40	2.69		
P 6	1.43	1.85	2.14	2.50	2.83	3.16		
P24	2.16	2.81	3.25	3.81	4.32	4.82		

SOIL GROUPS

100. % B, CN= 82, COVER TYPE= DESERT BRUSH , COVER DENSITY= 25 %

IMPERVIOUS COVER= 25. %

RAINFALL/RUNOFF AND PEAK DISCHARGE DATA

	EVENT					
	2-YR	5-YR	10-YR	25-YR	50-YR	100-YR
RUNOFF SUPPLY RATE (q/i):	.226		.358		.485	.533
Tc (FUNCTION OF i) :	40.94	36.53	34.05	31.70	30.17	29.04
SOLUTION OF Tc (MINUTES):	38	28	24	20	18	16
RAINFL INT. @ Tc (IN/HR):	1.198	1.918	2.453	3.205	3.856	4.569
RUNOFF RATE @ Tc (IN/HR):	.271	.576	.879	1.373	1.869	2.436
PEAK DISCHARGE (CFS) :	4.46	9.50	14.50	22.64	30.83	40.18

DRAINAGE CONCENTRATION POINT: D3 (WS D3)

WATERSHED AREA (A): .26 acres

LENGTH OF WATERCOURSE (Lc): 288. ft

LENGTH TO CENTER OF GRAVITY (Lca): 144. ft

INCREMENTAL CHANGE IN LENGTH (Li) - ft INCREMENTAL CHANGE IN ELEV (Hi) - ft

288.

1.4

MEAN SLOPE (Sc): .0050 ft BASIN FACTOR (Nb): .0350

WATERSHED TYPE(S): VALLEY

RAINFALL VALUES

	EVENT							
	2-YR	5-YR	10-YR	25-YR	50-YR	100-YR		
P 1	.88	1.17	1.36	1.61	1.84	2.06		
P 2	1.07	1.40	1.63	1.91	2.18	2.43		
P 3	1.19	1.56	1.80	2.12	2.40	2.69		
P 6	1.43	1.85	2.14	2.50	2.83	3.16		
P24	2.16	2.81	3.25	3.81	4.32	4.82		

SOIL GROUPS

100. % B, CN= 82, COVER TYPE= DESERT BRUSH , COVER DENSITY= 25 %

IMPERVIOUS COVER= 0. %

	EVENT					
	2-YR	5-YR	10-YR	25-YR	50-YR	100-YR
RUNOFF SUPPLY RATE (q/i):						
Tc (FUNCTION OF i) :	53.95	21.37	17.15	14.52	13.16	12.29
SOLUTION OF Tc (MINUTES):	56	14	10	8	7	6
RAINFL INT. @ Tc (IN/HR):	.925	2.772	3.679	4.815	5.783	6.833
RUNOFF RATE @ Tc (IN/HR):	.009	.276	.635	1.260	1.932	2.709
PEAK DISCHARGE (CFS) :	.00	.07	.17	.33	.51	.71

DRAINAGE CONCENTRATION POINT: D4 (WS D4)

WATERSHED AREA (A): 4.04 acres

LENGTH OF WATERCOURSE (Lc): 546. ft

LENGTH TO CENTER OF GRAVITY (Lca): 273. ft

INCREMENTAL CHANGE IN LENGTH (Li) - ft INCREMENTAL CHANGE IN ELEV (Hi) - ft

546. 2.7

MEAN SLOPE (Sc): .0050 ft BASIN FACTOR (Nb): .0220

WATERSHED TYPE(S): Moderate Urban

RAINFALL VALUES

	EVENT							
	2-YR	5 - YR	10-YR	25-YR	50-YR	100-YR		
P 1	.88	1.17	1.36	1.61	1.84	2.06		
P 2	1.07	1.40	1.63	1.91	2.18	2.43		
P 3	1.19	1.56	1.80	2.12	2.40	2.69		
P 6	1.43	1.85	2.14	2.50	2.83	3.16		
P24	2.16	2.81	3.25	3.81	4.32	4.82		

SOIL GROUPS

100. % B, CN= 82, COVER TYPE= DESERT BRUSH , COVER DENSITY= 25 %

IMPERVIOUS COVER= 60. %

RAINFALL/RUNOFF AND PEAK DISCHARGE DATA

ESTENIES.

		EVENT					
	2-YR	5-YR	10-YR	25-YR	50-YR	100-YR	
RUNOFF SUPPLY RATE (q/i):	.529	.582	.619	.662	.696	.725	
Tc (FUNCTION OF i) :	10.11	9.73	9.49	9.24	9.06	8.91	
SOLUTION OF Tc (MINUTES):	7	6	5	5	5	5	
RAINFL INT. @ Tc (IN/HR):	2.775	3.883	4.742	5.604	6.389	7.162	
RUNOFF RATE @ Tc (IN/HR):	1.467	2.259	2.934	3.709	4.446	5.190	
PEAK DISCHARGE (CFS) :	5.97	9.20	11.95	15.10	18.10	21.14	

DRAINAGE CONCENTRATION POINT: D4 (WS D3, D4 OS-6)

WATERSHED AREA (A): 4.53 acres

LENGTH OF WATERCOURSE (Lc): 843. ft

LENGTH TO CENTER OF GRAVITY (Lca): 422. ft

INCREMENTAL CHANGE IN LENGTH (Li) - ft INCREMENTAL CHANGE IN ELEV (Hi) - ft

546. 2.7 297. 1.5

MEAN SLOPE (Sc): .0050 ft BASIN FACTOR (Nb): .0270

WATERSHED TYPE(S): Moderate Urban

RAINFALL VALUES

	EVENT							
	2-YR	5-YR	10-YR	25-YR	50-YR	100-YR		
P 1	. 88	1.17	1.36	1.61	1.84	2.06		
P 2	1.07	1.40	1.63	1.91	2.18	2.43		
P 3	1.19	1.56	1.80	2.12	2.40	2.69		
P 6	1.43	1.85	2.14	2.50	2.83	3.16		
P24	2.16	2.81	3.25	3.81	4.32	4.82		

SOIL GROUPS

100. % B, CN= 82, COVER TYPE= DESERT BRUSH , COVER DENSITY= 25 %

IMPERVIOUS COVER= 54. %

	EVENT					
	2-YR	5-YR	10-YR	25-YR	50-YR	100-YR
RUNOFF SUPPLY RATE (q/i):		.534		.622	.660	.692
Tc (FUNCTION OF i) :	16.78	16.04	15.58	15.09	14.74	14.46
SOLUTION OF Tc (MINUTES):	12	10	9	8	7	7
RAINFL INT. @ Tc (IN/HR):	2.220	3.158	3.870	4.815	5.783	6.483
RUNOFF RATE @ Tc (IN/HR):	1.058	1.685	2.222	2.994	3.815	4.485
PEAK DISCHARGE (CFS) :	4.83	7.69	10.15	13.67	17.42	20.48

DRAINAGE CONCENTRATION POINT: D5 (WS D5)

WATERSHED AREA (A): .50 acres

LENGTH OF WATERCOURSE (Lc): 435. ft

LENGTH TO CENTER OF GRAVITY (Lca): 218. ft

INCREMENTAL CHANGE IN LENGTH (Li) - ft INCREMENTAL CHANGE IN ELEV (Hi) - ft

435.

MEAN SLOPE (Sc): .0050 ft BASIN FACTOR (Nb): .0350

WATERSHED TYPE(S): VALLEY

RAINFALL VALUES

2.2

	EVENT						
	2-YR	5-YR	10-YR	25-YR	50-YR	100-YR	
P 1	.88	1.17	1.36	1.61	1.84	2.06	
P 2	1.07	1.40	1.63	1.91	2.18	2.43	
P 3	1.19	1.56	1.80	2.12	2.40	2.69	
P 6	1.43	1.85	2.14	2.50	2.83	3.16	
P24	2.16	2.81	3.25	3.81	4.32	4.82	

SOIL GROUPS

100. % B, CN= 82, COVER TYPE= DESERT BRUSH , COVER DENSITY= 25 %

IMPERVIOUS COVER= 0. %

			EVI	ĭNT		
	2-YR	5-YR	10-YR	25-YR	50-YR	100-YR
RUNOFF SUPPLY RATE (q/i):						.397
Tc (FUNCTION OF i) :	69.08	27.37	21.96	18.59	16.86	15.74
SOLUTION OF Tc (MINUTES):	79	20	14	10	9	8
			3.230			6.154
RUNOFF RATE @ Tc (IN/HR):	.007	.232	.557	1.138	1.742	2.440
PEAK DISCHARGE (CFS) :	.00	.12	.28	.57	.88	1.23

DRAINAGE CONCENTRATION POINT: D5 (WS D3,D4 OS-6, D5)

WATERSHED AREA (A): 5.03 acres

LENGTH OF WATERCOURSE (Lc): 1278. ft

LENGTH TO CENTER OF GRAVITY (Lca): 639. ft

INCREMENTAL CHANGE IN LENGTH (Li) - ft INCREMENTAL CHANGE IN ELEV (Hi) - ft

546.2.7297.1.5435.2.2

MEAN SLOPE (Sc): .0050 ft BASIN FACTOR (Nb): .0300

WATERSHED TYPE(S): Moderate Urban

RAINFALL VALUES

	EVENT							
	2-YR	5-YR	10-YR	25-YR	50-YR	100-YR		
P 1	.88	1.17	1.36	1.61	1.84	2.06		
P 2	1.07	1.40	1.63	1.91	2.18	2.43		
P 3	1.19	1.56	1.80	2.12	2.40	2.69		
P 6	1.43	1.85	2.14	2.50	2.83	3.16		
P24	2.16	2.81	3.25	3.81	4.32	4.82		

SOIL GROUPS

100. % B, CN= 82, COVER TYPE= DESERT BRUSH , COVER DENSITY= 25 %

IMPERVIOUS COVER= 48. %

			EV]	ENT		
	2-YR	5-YR	10-YR	25-YR	50-YR	100-YR
	.425		.529		.623	.659
Tc (FUNCTION OF i) :	25.08	23.78	22.96	22.12	21.51	21.04
SOLUTION OF Tc (MINUTES):	20	16	15	13	12	11
RAINFL INT. @ Tc (IN/HR):	1.753	2.596	3.107	3.929	4.627	5.372
RUNOFF RATE @ Tc (IN/HR):	.745	1.260	1.645	2.286	2.885	3.540
PEAK DISCHARGE (CFS) :	3.78	6.39	8.34	11.59	14.63	17.95

DRAINAGE CONCENTRATION POINT: D6 (WS D6)

WATERSHED AREA (A): 5.04 acres

LENGTH OF WATERCOURSE (Lc): 821. ft

LENGTH TO CENTER OF GRAVITY (Lca): 411. ft

INCREMENTAL CHANGE IN LENGTH (Li) - ft INCREMENTAL CHANGE IN ELEV (Hi) - ft

821.

4.1

MEAN SLOPE (Sc): .0050 ft BASIN FACTOR (Nb): .0220

WATERSHED TYPE(S): Moderate Urban

RAINFALL VALUES

	EVENT						
	2-YR	5-YR	10-YR	25-YR	50-YR	100-YR	
P 1	. 88	1.17	1.36	1.61	1.84	2.06	
P 2	1.07	1.40	1.63	1.91	2.18	2.43	
P 3	1.19	1.56	1.80	2.12	2.40	2.69	
P 6	1.43	1.85	2.14	2.50	2.83	3.16	
P24	2.16	2.81	3.25	3.81	4.32	4.82	

SOIL GROUPS

100. % B, CN= 82, COVER TYPE= DESERT BRUSH , COVER DENSITY= 25 % IMPERVIOUS COVER= 60. %

RAINFALL/RUNOFF AND PEAK DISCHARGE DATA

יייזאים אים

			7.01	21/1 T		
	2-YR	5-YR	10-YR	25-YR	50-YR	100-YR
RUNOFF SUPPLY RATE (q/i):				.662		.725
Tc (FUNCTION OF i) :	12.91	12.43	12.12	11.80	11.57	11.38
SOLUTION OF Tc (MINUTES):	. 9	8	7	6	6	5
RAINFL INT. @ Tc (IN/HR):				5.347		
RUNOFF RATE @ Tc (IN/HR):	1.322	2.035	2.656	3.538	4.241	5.190
PEAK DISCHARGE (CFS) :	6.72	10.34	13.49	17.98	21.55	26.37

DRAINAGE CONCENTRATION POINT: D7 (WS D3-D6 OS-6)

WATERSHED AREA (A): 10.07 acres

LENGTH OF WATERCOURSE (Lc): 1529. ft

LENGTH TO CENTER OF GRAVITY (Lca): 764. ft

INCREMENTAL CHANGE IN LENGTH (Li) - ft INCREMENTAL CHANGE IN ELEV (Hi) - ft

T 4 C	2 5
546.	2.7
288.	1.4
101.	.5
455.	2.5
159.	.8

MEAN SLOPE (Sc): .0051 ft BASIN FACTOR (Nb): .0330

WATERSHED TYPE(S): Moderate Urban

RAINFALL VALUES

		EVENT						
	2-YR	5-YR	10-YR	25-YR	50-YR	100-YR		
P 1	.88	1.17	1.36	1.61	1.84	2.06		
P 2	1.07	1.40	1.63	1.91	2.18	2.43		
P 3	1.19	1.56	1.80	2.12	2.40	2.69		
P 6	1.43	1.85	2.14	2.50	2.83	3.16		
P24	2.16	2.81	3.25	3.81	4.32	4.82		

SOIL GROUPS

100. % B, CN= 82, COVER TYPE= DESERT BRUSH , COVER DENSITY= 25 % IMPERVIOUS COVER= 54. %

			EVI	ENT		
	2-YR	5-YR	10-YR	25-YR	50-YR	100-YR
RUNOFF SUPPLY RATE (q/i):		.534		.622	.660	.692
Tc (FUNCTION OF i) :	29.04	27.76	26.96	26.11	25.50	25.02
SOLUTION OF Tc (MINUTES):	24	20	18	16	14	13
RAINFL INT. @ Tc (IN/HR):	1.585	2.327	2.862	3.575	4.351	5.022
RUNOFF RATE @ Tc (IN/HR):	.756	1.242	1.643	2.223	2.870	3.474
PEAK DISCHARGE (CFS) :	7 67	10 61	7.5.50	00 50	00.10	25 25
PEAK DISCHARGE (CFS) :	7.67	12.61	16.68	22.56	29.13	35.27

DRAINAGE CONCENTRATION POINT: D8 (WS D8)

WATERSHED AREA (A): 1.65 acres

LENGTH OF WATERCOURSE (Lc): 475. ft

LENGTH TO CENTER OF GRAVITY (Lca): 238. ft

INCREMENTAL CHANGE IN LENGTH (Li) - ft INCREMENTAL CHANGE IN ELEV (Hi) - ft

475.

MEAN SLOPE (Sc): .0050 ft BASIN FACTOR (Nb): .0350

WATERSHED TYPE(S): VALLEY

RAINFALL VALUES

	EVENT							
•	2-YR	5-YR	10-YR	25-YR	50-YR	100-YR		
P 1	.88	1.17	1.36	1.61	1.84	2.06		
P 2	1.07	1.40	1.63	1.91	2.18	2.43		
P 3	1.19	1.56	1.80	2.12	2.40	2.69		
P 6	1.43	1.85	2.14	2.50	2.83	3.16		
P24	2.16	2.81	3.25	3.81	4.32	4.82		

SOIL GROUPS

100. % B, CN= 82, COVER TYPE= DESERT BRUSH , COVER DENSITY= 25 %

IMPERVIOUS COVER= 0. %

			EVI	ENT		
	2-YR	5~YR	10-YR	25-YR	50-YR	100-YR
RUNOFF SUPPLY RATE (q/i):	.010	.100	.172	.262	.334	.397
Tc (FUNCTION OF i) :	72.82	28.85	23.15	19.59	17.77	16.59
SOLUTION OF Tc (MINUTES):	85	21	15	11	9	8
RAINFL INT. @ Tc (IN/HR):	.677	2.257	3.107	4.203	5.214	6.154
RUNOFF RATE @ Tc (IN/HR):	.007	.225	.536	1.100	1.742	2.440
PEAK DISCHARGE (CFS) :	.01	.37	.89	1.83	2.90	4.06

DRAINAGE CONCENTRATION POINT: D9 (WS D9)

WATERSHED AREA (A): .51 acres

LENGTH OF WATERCOURSE (Lc): 320. ft

LENGTH TO CENTER OF GRAVITY (Lca): 160. ft

INCREMENTAL CHANGE IN LENGTH (Li) - ft INCREMENTAL CHANGE IN ELEV (Hi) - ft

320.

1.6

MEAN SLOPE (Sc): .0050 ft BASIN FACTOR (Nb): .0250

WATERSHED TYPE(S): Moderate Urban

RAINFALL VALUES

	EVENT						
	2-YR	5-YR	10-YR	25-YR	50-YR	100-YR	
P 1	.88	1.17	1.36	1.61	1.84	2.06	
P 2	1.07	1.40	1.63	1.91	2.18	2.43	
P 3	1.19	1.56	1.80	2.12	2.40	2.69	
P 6	1.43	1.85	2.14	2.50	2.83 ´	3.16	
P24	2.16	2.81	3.25	3.81	4.32	4.82	

SOIL GROUPS

100. % B, CN= 82, COVER TYPE= DESERT BRUSH , COVER DENSITY= 25 %

IMPERVIOUS COVER= 100. %

	EVENT					
	2-YR	5-YR	10-YR	25-YR	50-YR	100-YR
RUNOFF SUPPLY RATE (q/i):	.874	.903	.916	.928	.937	.943
Tc (FUNCTION OF i) :	6.82	6.73	6.69	6.66	6.63	6.61
SOLUTION OF Tc (MINUTES):	5	5	5	5	5	5
RAINFL INT. @ Tc (IN/HR):	3.065	4.070	4.742	5.604	6.389	7.162
RUNOFF RATE @ Tc (IN/HR):	2.680	3.677	4.345	5.204	5.986	6.757
PEAK DISCHARGE (CFS) :	1.38	1.89	2.23	2.68	3.08	3.47

DRAINAGE CONCENTRATION POINT: D10 (WS D10)

WATERSHED AREA (A): 2.44 acres

LENGTH OF WATERCOURSE (Lc): 516. ft

LENGTH TO CENTER OF GRAVITY (Lca): 258. ft

INCREMENTAL CHANGE IN LENGTH (Li) - ft INCREMENTAL CHANGE IN ELEV (Hi) - ft

516.

2.6

MEAN SLOPE (Sc): .0050 ft BASIN FACTOR (Nb): .0220

WATERSHED TYPE(S): Moderate Urban

RAINFALL VALUES

		EVENT							
	2-YR	5-YR	10-YR	25-YR	50-YR	100-YR			
P 1	.88	1.17	1.36	1.61	1.84	2.06			
P 2	1.07	1.40	1.63	1.91	2.18	2.43			
P 3	1.19	1.56	1.80	2.12	2.40	2.69			
P 6	1.43	1.85	2.14	2.50	2.83	3.16			
P24	2.16	2.81	3.25	3.81	4.32	4.82			

SOIL GROUPS

100. % B, CN= 82, COVER TYPE= DESERT BRUSH , COVER DENSITY= 25 %

IMPERVIOUS COVER= 60. %

	EVENT						
	2-YR	5-YR	10-YR	25-YR	50-YR	100-YR	
RUNOFF SUPPLY RATE (q/i):	.529	.582	.619	.662	.696	.725	
Tc (FUNCTION OF i) :	9.77	9.41	9.18	8.93	8.76	8.61	
SOLUTION OF Tc (MINUTES):	6	5	5	5	5	5	
RAINFL INT. @ Tc (IN/HR):	2.924	4.070	4.742	5.604	6.389	7.162	
RUNOFF RATE @ Tc (IN/HR):	1.546	2.368	2.934	3.709	4.446	5.190	
PEAK DISCHARGE (CFS) :	3.80	5.82	7.22	9.12	10.93	12.77	

DRAINAGE CONCENTRATION POINT: D11 (WS D11)

WATERSHED AREA (A): .34 acres

LENGTH OF WATERCOURSE (Lc): 230. ft

LENGTH TO CENTER OF GRAVITY (Lca): 115. ft

INCREMENTAL CHANGE IN LENGTH (Li) - ft INCREMENTAL CHANGE IN ELEV (Hi) - ft

230.

MEAN SLOPE (Sc): .0050 ft BASIN FACTOR (Nb): .0350

WATERSHED TYPE(S): VALLEY

RAINFALL VALUES

1.1

	EVENT							
	2-YR	5-YR	10-YR	25-YR	50-YR	100-YR		
P 1	.88	1.17	1.36	1.61	1.84	2.06		
P 2	1.07	1.40	1.63	1.91	2.18	2.43		
P 3	1.19	1.56	1.80	2.12	2.40	2.69		
P 6	1.43	1.85	2.14	2.50	2.83	3.16		
P24	2.16	2.81	3.25	3.81	4.32	4.82		

SOIL GROUPS

100. % B, CN= 82, COVER TYPE= DESERT BRUSH , COVER DENSITY= 25 %

IMPERVIOUS COVER= 0. %

RAINFALL/RUNOFF AND PEAK DISCHARGE DATA

TOT ZITATIO

	EVENT					
	2-YR	5-YR	10-YR	25-YR	50-YR	100-YR
RUNOFF SUPPLY RATE (q/i):						
Tc (FUNCTION OF i) :	47.14	18.67	14.99	12.68	11.50	10.74
SOLUTION OF Tc (MINUTES):	46	12	9	7	6	5
RAINFL INT. @ Tc (IN/HR):						
RUNOFF RATE @ Tc (IN/HR):	.010	.293	.667	1.328	2.037	2.840
PEAK DISCHARGE (CFS) :	.00	.10	.23	.46	.70	.97

DRAINAGE CONCENTRATION POINT: D11 (WS D10, D11)

WATERSHED AREA (A): 2.78 acres

LENGTH OF WATERCOURSE (Lc): 746. ft

LENGTH TO CENTER OF GRAVITY (Lca): 373. ft

INCREMENTAL CHANGE IN LENGTH (Li) - ft INCREMENTAL CHANGE IN ELEV (Hi) - ft

516. 2.6 230. 1.1

MEAN SLOPE (Sc): .0050 ft BASIN FACTOR (Nb): .0260

WATERSHED TYPE(S): Moderate Urban

RAINFALL VALUES

		EVENT							
	2-YR	5-YR	10-YR	25-YR	50-YR	100-YR			
P 1	.88	1.17	1.36	1.61	1.84	2.06			
P 2	1.07	1.40	1.63	1.91	2.18	2.43			
P 3	1.19	1.56	1.80	2.12	2.40	2.69			
P 6	1.43	1.85	2.14	2.50	2.83	3.16			
P24	2.16	2.81	3.25	3.81	4.32	4.82			

SOIL GROUPS

100. % B, CN= 82, COVER TYPE= DESERT BRUSH , COVER DENSITY= 25 %

IMPERVIOUS COVER= 53. %

	EVENT					
	2-YR	5-YR	10-YR	25-YR	50-YR	100-YR
RUNOFF SUPPLY RATE (q/i):	.468	.526	.567	.615	.654	.686
Tc (FUNCTION OF i) :	15.13	14.44	14.01	13.56	13.24	12.98
SOLUTION OF Tc (MINUTES):	11	9	8	7	7	6
RAINFL INT. @ Tc (IN/HR):	2.299	3.322	4.074	5.073	5.783	6.833
RUNOFF RATE @ Tc (IN/HR):	1.076	1.746	2.309	3.120	3.780	4.690
PEAK DISCHARGE (CFS) :	3.02	4.89	6.47	8.74	10.59	13.14

DRAINAGE CONCENTRATION POINT: D12 (WS D12)

WATERSHED AREA (A): 2.81 acres

LENGTH OF WATERCOURSE (Lc): 591. ft

LENGTH TO CENTER OF GRAVITY (Lca): 296. ft

INCREMENTAL CHANGE IN LENGTH (Li) - ft INCREMENTAL CHANGE IN ELEV (Hi) - ft

591. 3.0

MEAN SLOPE (Sc): .0050 ft BASIN FACTOR (Nb): .0220

WATERSHED TYPE(S): Moderate Urban

RAINFALL VALUES

	EVENT								
	2-YR	5-YR	10-YR	25-YR	50-YR	100-YR			
P 1	.88	1.17	1.36	1.61	1.84	2.06			
P 2	1.07	1.40	1.63	1.91	2.18	2.43			
P 3	1.19	1.56	1.80	2.12	2.40	2.69			
P 6	1.43	1.85	2.14	2.50	2.83	3.16			
P24	2.16	2.81	3.25	3.81	4.32	4.82			

SOIL GROUPS

100. % B, CN= 82, COVER TYPE= DESERT BRUSH , COVER DENSITY= 25 %

IMPERVIOUS COVER= 60. %

	EVENT					
	2-YR	5-YR	10-YR	25-YR	50-YR	100-YR
RUNOFF SUPPLY RATE (q/i):	.529	.582	.619	.662	.696	.725
Tc (FUNCTION OF i) :	10.60	10.20	9.95	9.69	9.50	9.34
SOLUTION OF Tc (MINUTES):	7	6	5	5	5	5
RAINFL INT. @ Tc (IN/HR):	2.775	3.883	4.742	5.604	6.389	7.162
RUNOFF RATE @ Tc (IN/HR):	1.467	2.259	2.934	3.709	4.446	5.190
PEAK DISCHARGE (CFS) :	4.15	6.40	8.31	10.51	12.59	14.70

DRAINAGE CONCENTRATION POINT: D13 (WS D10-D13)

WATERSHED AREA (A): 5.59 acres

LENGTH OF WATERCOURSE (Lc): 956. ft

LENGTH TO CENTER OF GRAVITY (Lca): 478. ft

INCREMENTAL CHANGE IN LENGTH (Li) - ft INCREMENTAL CHANGE IN ELEV (Hi) - ft

516.2.6230.1.1210.1.0

MEAN SLOPE (Sc): .0050 ft BASIN FACTOR (Nb): .0250

WATERSHED TYPE(S): Moderate Urban

RAINFALL VALUES

	EVENT								
	2-YR	5-YR	10-YR	25-YR	50-YR	100-YR			
P 1	.88	1.17	1.36	1.61	1.84	2.06			
P 2	1.07	1.40	1.63	1.91	2.18	2.43			
P 3	1.19	1.56	1.80	2.12	2.40	2.69			
P 6	1.43	1.85	2.14	2.50	2.83	3.16			
P24	2.16	2.81	3.25	3.81	4.32	4.82			

SOIL GROUPS

100. % B, CN= 82, COVER TYPE= DESERT BRUSH , COVER DENSITY= 25 %

IMPERVIOUS COVER= 56. %

	EVENT					
	2-YR	5-YR	10-YR	25-YR	50-YR	100-YR
RUNOFF SUPPLY RATE (q/i):	.494	.550	.589	.635	.672	.703
Tc (FUNCTION OF i) :	16.52	15.83	15.40	14.94	14.61	14.35
SOLUTION OF Tc (MINUTES):	12	10	9	8	7	7
RAINFL INT. @ Tc (IN/HR):	2.220	3.158	3.870	4.815	5.783	6.483
RUNOFF RATE @ Tc (IN/HR):	1.097	1.736	2.279	3.058	3.885	4.556
PEAK DISCHARGE (CFS) :	6.18	9.78	12.84	17.23	21.89	25.67

DRAINAGE CONCENTRATION POINT: D14 (WS D14)

WATERSHED AREA (A): 3.25 acres

LENGTH OF WATERCOURSE (Lc): 497. ft

LENGTH TO CENTER OF GRAVITY (Lca): 249. ft

INCREMENTAL CHANGE IN LENGTH (Li) - ft INCREMENTAL CHANGE IN ELEV (Hi) - ft

497. 2.5

MEAN SLOPE (Sc): .0050 ft BASIN FACTOR (Nb): .0220

WATERSHED TYPE(S): Moderate Urban

RAINFALL VALUES

		EVENT							
	2-YR	5-YR	10-YR	25-YR	50-YR	100-YR			
P 1	.88	1.17	1.36	1.61	1.84	2.06			
P 2	1.07	1.40	1.63	1.91	2.18	2.43			
P 3	1.19	1.56	1.80	2.12	2.40	2.69			
P 6	1.43	1.85	2.14	2.50	2.83	3.16			
P24	2.16	2.81	3.25	3.81	4.32	4.82			

SOIL GROUPS

100. % B, CN= 82, COVER TYPE= DESERT BRUSH , COVER DENSITY= 25 %

IMPERVIOUS COVER= 60. %

RAINFALL/RUNOFF AND PEAK DISCHARGE DATA

יייזאים 77ים

			EVI	71/1 T	1 4 4	
	2-YR	5-YR	10-YR	25-YR	50-YR	100-YR
RUNOFF SUPPLY RATE (q/i):	.529	.582	.619	.662	.696	.725
Tc (FUNCTION OF i) :	9.55	9.19	8.97	8.73	8.56	8.42
SOLUTION OF Tc (MINUTES):	6	5	- 5	5	5	5
RAINFL INT. @ Tc (IN/HR):	2.924	4.070	4.742	5.604	6.389	7.162
RUNOFF RATE @ Tc (IN/HR):	1.546	2.368	2.934	3.709	4.446	5.190
PEAK DISCHARGE (CFS) :	5.06	7.76	9.61	12.15	14.56	17.00

DRAINAGE CONCENTRATION POINT: D15 (WS D15)

WATERSHED AREA (A): 5.26 acres

LENGTH OF WATERCOURSE (Lc): 888. ft

LENGTH TO CENTER OF GRAVITY (Lca): 444. ft

INCREMENTAL CHANGE IN LENGTH (Li) - ft INCREMENTAL CHANGE IN ELEV (Hi) - ft

888. 4.4

MEAN SLOPE (Sc): .0050 ft BASIN FACTOR (Nb): .0220

WATERSHED TYPE(S): Moderate Urban

RAINFALL VALUES

	EVENT							
	2-YR	5 - YR	10-YR	25-YR	50-YR	100-YR		
P 1	.88	1.17	1.36	1.61	1.84	2.06		
P 2	1.07	1.40	1.63	1.91	2.18	2.43		
P 3	1.19	1.56	1.80	2.12	2.40	2.69		
P 6	1.43	1.85	2.14	2.50	2.83	3.16		
P24	2.16	2.81	3.25	3.81	4.32	4.82		

SOIL GROUPS

100. % B, CN= 82, COVER TYPE= DESERT BRUSH , COVER DENSITY= 25 %

IMPERVIOUS COVER= 60. %

	EVENT					
	2-YR	5-YR	10-YR	25-YR	50-YR	100-YR
						ı
RUNOFF SUPPLY RATE (q/i):	.529	.582	.619	.662	.696	.725
Tc (FUNCTION OF i) :	13.54	13.03	12.71	12.37	12.13	11.93
SOLUTION OF Tc (MINUTES):	10	8	7	6	6	6
RAINFL INT. @ Tc (IN/HR):	2.378	3.497	4.292	5.347	6.096	6.833
RUNOFF RATE @ Tc (IN/HR):	1.257	2.035	2.656	3.538	4.241	4.952
PEAK DISCHARGE (CFS) :	6.67	10.79	14.08	18.76	22.49	26.25

DRAINAGE CONCENTRATION POINT: D15 (WS D15, OS-2)

WATERSHED AREA (A): 5.72 acres

LENGTH OF WATERCOURSE (Lc): 1033. ft

LENGTH TO CENTER OF GRAVITY (Lca): 517. ft

INCREMENTAL CHANGE IN LENGTH (Li) - ft INCREMENTAL CHANGE IN ELEV (Hi) - ft

MEAN SLOPE (Sc): .0050 ft BASIN FACTOR (Nb): .0240

WATERSHED TYPE(S): Moderate Urban

RAINFALL VALUES

	EVENT							
	2-YR	5-YR	10-YR	25-YR	50-YR	100-YR		
P 1	.88	1.17	1.36	1.61	1.84	2.06		
P 2	1.07	1.40	1.63	1.91	2.18	2.43		
P 3	1.19	1.56	1.80	2.12	2.40	2.69		
P 6	1.43	1.85	2.14	2.50	2.83	3.16		
P24	2.16	2.81	3.25	3.81	4.32	4.82		

SOIL GROUPS

100. % B, CN= 82, COVER TYPE= DESERT BRUSH , COVER DENSITY= 25 %

IMPERVIOUS COVER= 55. %

	EVENT					
	2-YR	5-YR	10-YR	25-YR	50-YR	100-YR
		.542				.697
Tc (FUNCTION OF i) :	16.73	16.01	15.56	15.09	14.74	14.47
SOLUTION OF Tc (MINUTES):	12	10	9	8	7	7
RAINFL INT. @ Tc (IN/HR):	2.220	3.158	3.870	4.815	5.783	6.483
RUNOFF RATE @ Tc (IN/HR):	1.077	1.710	2.251	3.026	3.850	4.521
PEAK DISCHARGE (CFS) :	6.21	9.86	12.98	17.45	22.20	26.07

DRAINAGE CONCENTRATION POINT: D16 (WS D15, D14 OS-2)

WATERSHED AREA (A): 8.97 acres

LENGTH OF WATERCOURSE (Lc): 1117. ft

LENGTH TO CENTER OF GRAVITY (Lca): 559. ft

INCREMENTAL CHANGE IN LENGTH (Li) - ft INCREMENTAL CHANGE IN ELEV (Hi) - ft

MEAN SLOPE (Sc): .0050 ft BASIN FACTOR (Nb): .0250

WATERSHED TYPE(S): Moderate Urban

RAINFALL VALUES

	EVENT								
	2-YR	5-YR	10-YR	25-YR	50-YR	100-YR			
P 1	.88	1.17	1.36	1.61	1.84	2.06			
P 2	1.07	1.40	1.63	1.91	2.18	2.43			
P 3	1.19	1.56	1.80	2.12	2.40	2.69			
P 6	1.43	1.85	2.14	2.50	2.83	3.16			
P24	2.16	2.81	3.25	3.81	4.32	4.82			

SOIL GROUPS

100. % B, CN= 82, COVER TYPE= DESERT BRUSH , COVER DENSITY= 25 %

IMPERVIOUS COVER= 57. %

FAFINI					
2-YR	5-YR	10-YR	25-YR	50-YR	100-YR
503	558	596	642	678	.708
18.01		16.82	16.33	15.98	15.70
13	11	10	9	8	. 8
2.149	3.053	3.679	4.574	5.490	6.154
1.080	1.702	2.194	2.935	3.720	4.358
9.77	15.39	19.84	26.54	33.64	39.41
	.503 18.01 13 2.149 1.080	.503 .558 18.01 17.28 13 11 2.149 3.053 1.080 1.702	2-YR 5-YR 10-YR .503 .558 .596 18.01 17.28 16.82 13 11 10 2.149 3.053 3.679 1.080 1.702 2.194	2-YR 5-YR 10-YR 25-YR .503 .558 .596 .642 18.01 17.28 16.82 16.33	2-YR 5-YR 10-YR 25-YR 50-YR .503 .558 .596 .642 .678 18.01 17.28 16.82 16.33 15.98 13 11 10 9 8 2.149 3.053 3.679 4.574 5.490 1.080 1.702 2.194 2.935 3.720

DRAINAGE CONCENTRATION POINT: D17 (WS D17)

WATERSHED AREA (A): 3.60 acres

LENGTH OF WATERCOURSE (Lc): 627. ft

LENGTH TO CENTER OF GRAVITY (Lca): 314. ft

INCREMENTAL CHANGE IN LENGTH (Li) - ft INCREMENTAL CHANGE IN ELEV (Hi) - ft

627.

MEAN SLOPE (Sc): .0050 ft BASIN FACTOR (Nb): .0220

WATERSHED TYPE(S): Moderate Urban

RAINFALL VALUES

	EVENT							
	2 - YR	5-YR	10-YR	25-YR	50-YR	100-YR		
P 1	.88	1.17	1.36	1.61	1.84	2.06		
P 2	1.07	1.40	1.63	1.91	2.18	2.43		
P 3	1.19	1.56	1.80	2.12	2.40	2.69		
P 6	1.43	1.85	2.14	2.50	2.83	3.16		
P24	2.16	2.81	3.25	3.81	4.32	4.82		

SOIL GROUPS

100. % B, CN= 82, COVER TYPE= DESERT BRUSH , COVER DENSITY= 25 %

IMPERVIOUS COVER= 60. %

	EVENT					
	2-YR	5-YR	10-YR	25-YR	50-YR	100-YR
RUNOFF SUPPLY RATE (q/i):	.529	.582	.619	.662	.696	.725
Tc (FUNCTION OF i) :	10.98	10.57	10.31	10.04	9.84	9.68
SOLUTION OF Tc (MINUTES):	7	6	6	5	5	5
RAINFL INT. @ Tc (IN/HR):	2.775	3.883	4.524	5.604	6.389	7.162
RUNOFF RATE @ Tc (IN/HR):	1.467	2.259	2.799	3.709	4.446	5.190
PEAK DISCHARGE (CFS) :	5.32	8.20	10.16	13.46	16.13	18.83

DRAINAGE CONCENTRATION POINT: D17 (WS D17, OS-5)

WATERSHED AREA (A): 4.04 acres

LENGTH OF WATERCOURSE (Lc): 924. ft

LENGTH TO CENTER OF GRAVITY (Lca): 463. ft

INCREMENTAL CHANGE IN LENGTH (Li) - ft INCREMENTAL CHANGE IN ELEV (Hi) - ft

627. 3.1 297. 1.5

MEAN SLOPE (Sc): .0050 ft BASIN FACTOR (Nb): .0260

WATERSHED TYPE(S): Moderate Urban

RAINFALL VALUES

		EVENT								
	2-YR	5-YR	10-YR	25-YR	50-YR	100-YR				
P 1	. 88	1.17	1.36	1.61	1.84	2.06				
P 2	1.07	1.40	1.63	1.91	2.18	2.43				
P 3	1.19	1.56	1.80	2.12	2.40	2.69				
P 6	1.43	1.85	2.14	2.50	2.83	3.16				
P24	2.16	2.81	3.25	3.81	4.32	4.82				

SOIL GROUPS

100. % B, CN= 82, COVER TYPE= DESERT BRUSH , COVER DENSITY= 25 %

IMPERVIOUS COVER= 53. %

	EVENT					
	2-YR	5-YR	10-YR	25-YR	50-YR	100-YR
RUNOFF SUPPLY RATE (q/i):					.654	.686
Tc (FUNCTION OF i) :	17.20	16.42	15.93	15.42	15.05	14.76
SOLUTION OF Tc (MINUTES):	13	11	9	. 8	8	7
RAINFL INT. @ Tc (IN/HR):	2.149	3.053	3.870	4.815	5.490	6.483
RUNOFF RATE @ Tc (IN/HR):	1.006	1.604	2.193	2.962	3.588	4.450
PEAK DISCHARGE (CFS) :	4.10	6.53	8.93	12.06	14.61	18.12

DRAINAGE CONCENTRATION POINT: D18 (WS D18)

WATERSHED AREA (A): 3.91 acres

LENGTH OF WATERCOURSE (Lc): 1156. ft

LENGTH TO CENTER OF GRAVITY (Lca): 578. ft

INCREMENTAL CHANGE IN LENGTH (Li) - ft INCREMENTAL CHANGE IN ELEV (Hi) - ft

1156.

5.8

MEAN SLOPE (Sc): .0050 ft BASIN FACTOR (Nb): .0350

WATERSHED TYPE(S): VALLEY

RAINFALL VALUES

	EVENT							
	2-YR	5-YR	10-YR	25-YR	50-YR	100-YR		
P 1	.88	1.17	1.36	1.61	1.84	2.06		
P 2	1.07	1.40	1.63	1.91	2.18	2.43		
P 3	1.19	1.56	1.80	2.12	2.40	2.69		
P 6	1.43	1.85	2.14	2.50	2.83	3.16		
P24	2.16	2.81	3.25	3.81	4.32	4.82		

SOIL GROUPS

100. % B, CN= 82, COVER TYPE= DESERT BRUSH , COVER DENSITY= 25 %

IMPERVIOUS COVER= 0. %

			EVE	ENT		
	2-YR	5-YR	10-YR	25-YR	50-YR	100-YR
RUNOFF SUPPLY RATE (q/i):			.172		.334	.397
Tc (FUNCTION OF i) :	124.20	49.20	39.49	33.42	30.31	28.30
SOLUTION OF Tc (MINUTES):	180	42	29	21	18	15
RAINFL INT. @ Tc (IN/HR):	.398	1.485	2.194	3.108	3.856	4.693
RUNOFF RATE @ Tc (IN/HR):	.004	.148	.378	.813	1.288	1.861
PEAK DISCHARGE (CFS) :	.02	.58	1.49	3.21	5.08	7.33

DRAINAGE CONCENTRATION POINT: D19 (WS D19)

WATERSHED AREA (A): 3.43 acres

LENGTH OF WATERCOURSE (Lc): 902. ft

LENGTH TO CENTER OF GRAVITY (Lca): 451. ft

INCREMENTAL CHANGE IN LENGTH (Li) - ft INCREMENTAL CHANGE IN ELEV (Hi) - ft

902. 4.5

MEAN SLOPE (Sc): .0050 ft BASIN FACTOR (Nb): .0220

WATERSHED TYPE(S): Moderate Urban

RAINFALL VALUES

	EVENT							
	2-YR	5-YR	10-YR	25-YR	50-YR	100-YR		
P 1	.88	1.17	1.36	1.61	1.84	2.06		
P 2	1.07	1.40	1.63	1.91	2.18	2.43		
P 3	1.19	1.56	1.80	2.12	2.40	2.69		
P 6	1.43	1.85	2.14	2.50	2.83	3.16		
P24	2.16	2.81	3.25	3.81	4.32	4.82		

SOIL GROUPS

100. % B, CN= 82, COVER TYPE= DESERT BRUSH , COVER DENSITY= 25 %

IMPERVIOUS COVER= 60. %

RAINFALL/RUNOFF AND PEAK DISCHARGE DATA

EVENT

				711 1		
	2-YR	5-YR	10-YR	25-YR	50-YR	100-YR
RUNOFF SUPPLY RATE (q/i):	529	582	619	662	696	725
Tc (FUNCTION OF i) :						
			7			
RAINFL INT. @ Tc (IN/HR):						
RUNOFF RATE @ Tc (IN/HR):	1.257	2.035	2.656	3.357	4.241	4.952
						
PEAK DISCHARGE (CFS) :	4.35	7.03	9.18	11.61	14.66	17.12

DRAINAGE CONCENTRATION POINT: D20 (WS D20)

WATERSHED AREA (A): 5.40 acres

LENGTH OF WATERCOURSE (Lc): 587. ft

LENGTH TO CENTER OF GRAVITY (Lca): 294. ft

INCREMENTAL CHANGE IN LENGTH (Li) - ft INCREMENTAL CHANGE IN ELEV (Hi) - ft

587. 2.9

MEAN SLOPE (Sc): .0050 ft BASIN FACTOR (Nb): .0220

WATERSHED TYPE(S): Moderate Urban

RAINFALL VALUES

	EVENT							
	2-YR	5-YR	10-YR	25-YR	50-YR	100-YR		
P 1	.88	1.17	1.36	1.61	1.84	2.06		
P 2	1.07	1.40	1.63	1.91	2.18	2.43		
P 3	1.19	1.56	1.80	2.12	2.40	2.69		
P 6	1.43	1.85	2.14	2.50	2.83	3.16		
P24	2.16	2.81	3.25	3.81	4.32	4.82		

SOIL GROUPS

100. % B, CN= 82, COVER TYPE= DESERT BRUSH , COVER DENSITY= 25 %

IMPERVIOUS COVER= 60. %

RAINFALL/RUNOFF AND PEAK DISCHARGE DATA

יכוד ויכוד ויכו

			EAR	SNT		
	2-YR	5-YR	10-YR	25-YR	50-YR	100-YR
RUNOFF SUPPLY RATE (q/i):	.529	.582	.619	.662	.696	.725
Tc (FUNCTION OF i) :	10.56	10.16	9.91	9.65	9.46	9.31
SOLUTION OF Tc (MINUTES):	7	6	5	5	5	5
RAINFL INT. @ Tc (IN/HR):	2.775	3.883	4.742	5.604	6.389	7.162
RUNOFF RATE @ Tc (IN/HR):	1.467	2.259	2.934	3.709	4.446	5.190
PEAK DISCHARGE (CFS) :	7.98	12.30	15.97	20.19	24.20	28.25

DRAINAGE CONCENTRATION POINT: D20 (WS D20, D21)

WATERSHED AREA (A): 5.72 acres

LENGTH OF WATERCOURSE (Lc): 719. ft

LENGTH TO CENTER OF GRAVITY (Lca): 360. ft

INCREMENTAL CHANGE IN LENGTH (Li) - ft INCREMENTAL CHANGE IN ELEV (Hi) - ft

587. 24.0

132.

MEAN SLOPE (Sc): .0232 ft BASIN FACTOR (Nb): .0310

WATERSHED TYPE(S): Moderate Urban

RAINFALL VALUES

		EVENT						
	2-YR	5-YR	10-YR	25-YR	50-YR	100-YR		
P 1	.88	1.17	1.36	1.61	1.84	2.06		
P 2	1.07	1.40	1.63	1.91	2.18	2.43		
P 3	1.19	1.56	1.80	2.12	2.40	2.69		
P 6	1.43	1.85	2.14	2.50	2.83	3.16		
P24	2.16	2.81	3.25	3.81	4.32	4.82		

SOIL GROUPS

100. % B, CN= 82, COVER TYPE= DESERT BRUSH , COVER DENSITY= 25 %

IMPERVIOUS COVER= 57. %

	EVENT					
	2-YR	5-YR	10-YR	25-YR	50-YR	100-YR
RUNOFF SUPPLY RATE (q/i):	.503	.558	.596	.642	.678	.708
Tc (FUNCTION OF i) :	9.28	8.90	8.66	8.41	8.23	8.09
SOLUTION OF Tc (MINUTES):	6	5	5	5	5	5
RAINFL INT. @ Tc (IN/HR):	2.924	4.070	4.742	5.604	6.389	7.162
RUNOFF RATE @ Tc (IN/HR):	1.470	2.270	2.828	3.597	4.330	5.073
PEAK DISCHARGE (CFS) :	8.48	13.09	16.31	20.74	24.97	29.25

DRAINAGE CONCENTRATION POINT: D21 (WS D21)

WATERSHED AREA (A): .32 acres

LENGTH OF WATERCOURSE (Lc): 132. ft

LENGTH TO CENTER OF GRAVITY (Lca): 66. ft

INCREMENTAL CHANGE IN LENGTH (Li) - ft INCREMENTAL CHANGE IN ELEV (Hi) - ft

132.

.7

MEAN SLOPE (Sc): .0050 ft BASIN FACTOR (Nb): .0350

WATERSHED TYPE(S): VALLEY

RAINFALL VALUES

		EVENT							
	2-YR	5-YR	10-YR	25-YR	50-YR	100-YR			
P 1	.88	1.17	1.36	1.61	1.84	2.06			
P 2	1.07	1.40	1.63	1.91	2.18	2.43			
P 3	1.19	1.56	1.80	2.12	2.40	2.69			
P 6	1.43	1.85	2.14	2.50	2.83	3.16			
P24	2.16	2.81	3.25	3.81	4.32	4.82			

SOIL GROUPS

100. % B, CN= 82, COVER TYPE= DESERT BRUSH , COVER DENSITY= 25 %

IMPERVIOUS COVER= 0. %

	EAEU.I.					
	2~YR	5-YR	10-YR	25-YR	50-YR	100-YR
RUNOFF SUPPLY RATE (q/i):	.010	.100	.172	.262	.334	.397
Tc (FUNCTION OF i) :	33.78	13.38	10.74	9.09	8.24	7.70
SOLUTION OF Tc (MINUTES):	30	8	6	5	5	5
RAINFL INT. @ Tc (IN/HR):	1.392	3.497	4.524	5.604	6.389	7.162
RUNOFF RATE @ Tc (IN/HR):	.014	.348	.780	1.467	2.135	2.840
PEAK DISCHARGE (CFS) :	.00	.11	.25	.47	.69	.92

DRAINAGE CONCENTRATION POINT: D22 (WS D22)

WATERSHED AREA (A): .79 acres

LENGTH OF WATERCOURSE (Lc): 244. ft

LENGTH TO CENTER OF GRAVITY (Lca): 122. ft

INCREMENTAL CHANGE IN LENGTH (Li) - ft INCREMENTAL CHANGE IN ELEV (Hi) - ft

244.

MEAN SLOPE (Sc): .0050 ft BASIN FACTOR (Nb): .0350

WATERSHED TYPE(S): VALLEY

RAINFALL VALUES

	EVENT								
	2-YR	5-YR	10-YR	25-YR	50-YR	100-YR			
P 1	.88	1.17	1.36	1.61	1.84	2.06			
P 2	1.07	1.40	1.63	1.91	2.18	2.43			
P 3	1.19	1.56	1.80	2.12	2.40	2.69			
P 6	1.43	1.85	2.14	2.50	2.83	3.16			
P24	2.16	2.81	3.25	3.81	4.32	4.82			

SOIL GROUPS

100. % B, CN= 82, COVER TYPE= DESERT BRUSH , COVER DENSITY= 25 %

IMPERVIOUS COVER= 0. %

	EVENT					
	2-YR	5-YR	10-YR	25-YR	50-YR	100-YR
RUNOFF SUPPLY RATE (q/i):	.010	.100	.172	.262	.334	.397
Tc (FUNCTION OF i) :	48.84	19.35	15.53	13.14	11.92	11.13
SOLUTION OF Tc (MINUTES):	49	13	9	7	6	5
RAINFL INT. @ Tc (IN/HR):	1.013	2.854	3.870	5.073	6.096	7.162
RUNOFF RATE @ Tc (IN/HR):	.010	.284	.667	1.328	2.037	2.840
PEAK DISCHARGE (CFS) :	.01	.23	.53	1.06	1.62	2.26

DRAINAGE CONCENTRATION POINT: OS-1 (WS OS-1)

WATERSHED AREA (A): 9.05 acres

LENGTH OF WATERCOURSE (Lc): 963. ft

LENGTH TO CENTER OF GRAVITY (Lca): 482. ft

INCREMENTAL CHANGE IN LENGTH (Li) - ft INCREMENTAL CHANGE IN ELEV (Hi) - ft

963. 4.8

MEAN SLOPE (Sc): .0050 ft BASIN FACTOR (Nb): .0350

WATERSHED TYPE(S): VALLEY

RAINFALL VALUES

	EVENT								
	2-YR	5-YR	10-YR	25-YR	50-YR	100-YR			
P 1	.88	1.17	1.36	1.61	1.84	2.06			
P 2	1.07	1.40	1.63	1.91	2.18	2.43			
P 3	1.19	1.56	1.80	2.12	2.40	2.69			
P 6	1.43	1.85	2.14	2.50	2.83	3.16			
P24	2.16	2.81	3.25	3.81	4.32	4.82			

SOIL GROUPS

100. % B, CN= 82, COVER TYPE= DESERT BRUSH , COVER DENSITY= 25 %

IMPERVIOUS COVER= 0. %

	EVENT						
	2-YR	5-YR	10-YR	25-YR	50-YR	100-YR	
RUNOFF SUPPLY RATE (q/i):							
Tc (FUNCTION OF i) :	111.29	44.09	35.38	29.95	27.16	25.36	
SOLUTION OF Tc (MINUTES):	154	36	25	19	15	13	
RAINFL INT. @ Tc (IN/HR):	.444	1.649	2.385	3.285	4.186	5.022	
RUNOFF RATE @ Tc (IN/HR):	.004	.164	.411	.860	1.399	1.991	
PEAK DISCHARGE (CFS) :	.04	1.50	3.75	7.84	12.76	18.16	

DRAINAGE CONCENTRATION POINT: OS-2 (WS OS-2)

WATERSHED AREA (A): .46 acres

LENGTH OF WATERCOURSE (Lc): 145. ft

LENGTH TO CENTER OF GRAVITY (Lca): 73. ft

INCREMENTAL CHANGE IN LENGTH (Li) - ft INCREMENTAL CHANGE IN ELEV (Hi) - ft

145. .7

MEAN SLOPE (Sc): .0050 ft BASIN FACTOR (Nb): .0350

WATERSHED TYPE(S): VALLEY

RAINFALL VALUES

		EVENT						
	2-YR	5-YR	10-YR	25-YR	50-YR	100-YR		
P 1	.88	1.17	1.36	1.61	1.84	2.06		
P 2	1.07	1.17	1.63	1.91	2.18	2.43		
P 3	1.19	1.56	1.80	2.12	2.10	2.43		
P 6	1.43	1.85	2.14	2.50	2.83	3.16		
P24	2.16	2.81	3.25	3.81	4.32	4.82		

SOIL GROUPS

100. % B, CN= 82, COVER TYPE= DESERT BRUSH , COVER DENSITY= 25 %

IMPERVIOUS COVER= 0. %

	EVENT					
	2-YR	5-YR	10-YR	25-YR	50-YR	100-YR
RUNOFF SUPPLY RATE (q/i):	.010	.100	.172	.262	.334	.397
Tc (FUNCTION OF i) :	35.72	14.15	11.36	9.61	8.72	8.14
SOLUTION OF Tc (MINUTES):	32	9	6	5	5	5
RAINFL INT. @ Tc (IN/HR):	1.330	3.322	4.524	5.604	6.389	7.162
RUNOFF RATE @ Tc (IN/HR):	.013	.331	.780	1.467	2.135	2.840
PEAK DISCHARGE (CFS) :	.01	.15	.36	.68	.99	1.32

DRAINAGE CONCENTRATION POINT: OS-3 (WS OS-3)

WATERSHED AREA (A): 6.62 acres

LENGTH OF WATERCOURSE (Lc): 903. ft

LENGTH TO CENTER OF GRAVITY (Lca): 452. ft

INCREMENTAL CHANGE IN LENGTH (Li) - ft INCREMENTAL CHANGE IN ELEV (Hi) - ft

903.

4.5

MEAN SLOPE (Sc): .0050 ft BASIN FACTOR (Nb): .0350

WATERSHED TYPE(S): VALLEY

RAINFALL VALUES

		EVENT						
	2-YR	5-YR	10-YR	25-YR	50-YR	100-YR		
P 1	.88	1.17	1.36	1.61	1.84	2.06		
P 2	1.07	1.40	1.63	1.91	2.18	2.43		
P 3	1.19	1.56	1.80	2.12	2.40	2.69		
P 6	1.43	1.85	2.14	2.50	2.83	3.16		
P24	2.16	2.81	3.25	3.81	4.32	4.82		

SOIL GROUPS

100. % B, CN= 82, COVER TYPE= DESERT BRUSH , COVER DENSITY= 25 %

IMPERVIOUS COVER= 0. %

	EVENT					
2-YR	5-YR	10-YR	25-YR	50-YR	100-YR	
RUNOFF SUPPLY RATE (q/i): .010						
Tc (FUNCTION OF i) : 107.08	42.42	34.04	28.81	26.13	24.40	
SOLUTION OF Tc (MINUTES): 146	35	24	18	15	13	
RAINFL INT. @ Tc (IN/HR): .461	1.673	2.453	3.382	4.186	5.022	
RUNOFF RATE @ Tc (IN/HR): .005	.166	.423	.885	1.399	1.991	
PEAK DISCHARGE (CFS) : .03	1.11	2.82	5.91	9.33	13.29	

DRAINAGE CONCENTRATION POINT: OS-4 (WS OS-4)

WATERSHED AREA (A): 1.65 acres

LENGTH OF WATERCOURSE (Lc): 870. ft

LENGTH TO CENTER OF GRAVITY (Lca): 435. ft

INCREMENTAL CHANGE IN LENGTH (Li) - ft INCREMENTAL CHANGE IN ELEV (Hi) - ft

870. 4.3

MEAN SLOPE (Sc): .0050 ft BASIN FACTOR (Nb): .0350

WATERSHED TYPE(S): VALLEY

RAINFALL VALUES

		EVENT						
	2-YR	5-YR	10-YR	25-YR	50-YR	100-YR		
P 1	.88	1.17	1.36	1.61	1.84	2.06		
P 2	1.07	1.40	1.63	1.91	2.18	2.43		
P 3	1.19	1.56	1.80	2.12	2.40	2.69		
P 6	1.43	1.85	2.14	2.50	2.83	3.16		
P24	2.16	2.81	3.25	3.81	4.32	4.82		

SOIL GROUPS

100. % B, CN= 82, COVER TYPE= DESERT BRUSH , COVER DENSITY= 25 %

IMPERVIOUS COVER= 0. %

	EVENT					
	2-YR	5-YR	10-YR	25-YR	50-YR	100-YR
RUNOFF SUPPLY RATE (q/i):	.010	.100	.172	.262	.334	.397
Tc (FUNCTION OF i) :	104.73	41.49	33.30	28.18	25.56	23.87
SOLUTION OF TC (MINUTES):	142	33	23	17	14	13
RAINFL INT. @ Tc (IN/HR):	.471	1.731	2.507	3.479	4.351	5.022
RUNOFF RATE @ Tc (IN/HR):	.005	.172	.432	.910	1.454	1.991
PEAK DISCHARGE (CFS) :	.01	.29	.72	1.51	2.42	3.31

DRAINAGE CONCENTRATION POINT: OS-5 (WS OS-5)

WATERSHED AREA (A): .44 acres

LENGTH OF WATERCOURSE (Lc): 297. ft

LENGTH TO CENTER OF GRAVITY (Lca): 149. ft

INCREMENTAL CHANGE IN LENGTH (Li) - ft INCREMENTAL CHANGE IN ELEV (Hi) - ft

297.

MEAN SLOPE (Sc): .0050 ft BASIN FACTOR (Nb): .0350

WATERSHED TYPE(S): VALLEY

RAINFALL VALUES

1.5

		EVENT					
	2-YR	5-YR	10-YR	25-YR	50-YR	100-YR	
P 1	.88	1.17	1.36	1.61	1.84	2.06	
P 2	1.07	1.40	1.63	1.91	2.18	2.43	
P 3	1.19	1.56	1.80	2.12	2.40	2.69	
P 6	1.43	1.85	2.14	2.50	2.83	3.16	
P24	2.16	2.81	3.25	3.81	4.32	4.82	

SOIL GROUPS

100. % B, CN= 82, COVER TYPE= DESERT BRUSH , COVER DENSITY= 25 %

IMPERVIOUS COVER= 0. %

	EVENT					
	2-YR	5-YR	10-YR	25-YR	50-YR	100-YR
RUNOFF SUPPLY RATE (q/i):						
Tc (FUNCTION OF i) :	54.93	21.76	17.47	14.78	13.41	12.52
SOLUTION OF Tc (MINUTES):	57	15	11	8	7	6
RAINFL INT. @ Tc (IN/HR):	.916	2.667	3.557	4.815	5.783	6.833
RUNOFF RATE @ Tc (IN/HR):	.009	.265	.613	1.260	1.932	2.709
PEAK DISCHARGE (CFS) :	.00	.12	.27	.56	.86	1.20

DRAINAGE CONCENTRATION POINT: OS-6 (WS OS-6)

WATERSHED AREA (A): .23 acres

LENGTH OF WATERCOURSE (Lc): 297. ft

LENGTH TO CENTER OF GRAVITY (Lca): 149. ft

INCREMENTAL CHANGE IN LENGTH (Li) - ft INCREMENTAL CHANGE IN ELEV (Hi) - ft

297. 1.5

MEAN SLOPE (Sc): .0050 ft BASIN FACTOR (Nb): .0350

WATERSHED TYPE(S): VALLEY

RAINFALL VALUES

		EVENT					
		2-YR	5-YR	10-YR	25-YR	50-YR	100-YR
P	1	.88	1.17	1.36	1.61	1.84	2.06
Ρ	2	1.07	1.40	1.63	1.91	2.18	2.43
P	3	1.19	1.56	1.80	2.12	2.40	2.69
Ρ	6	1.43	1.85	2.14	2.50	2.83	3.16
P:	24	2.16	2.81	3.25	3.81	4.32	4.82

SOIL GROUPS

100. % B, CN= 82, COVER TYPE= DESERT BRUSH , COVER DENSITY= 25 %

IMPERVIOUS COVER= 0. %

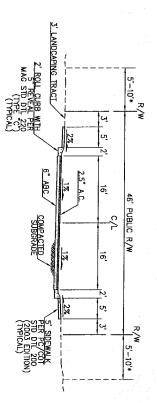
	EVENT					
	2-YR	5-YR	10-YR	25-YR	50-YR	100-YR
RUNOFF SUPPLY RATE (q/i):	.010	.100	.172	.262	.334	.397
Tc (FUNCTION OF i) :	54.93	21.76	17.47	14.78	13.41	12.52
SOLUTION OF Tc (MINUTES):	57	15	11	8	7	6
RAINFL INT. @ Tc (IN/HR):			3.557			6.833
RUNOFF RATE @ Tc (IN/HR):	.009	.265	.613	1.260	1.932	2.709
PEAK DISCHARGE (CFS) :	.00	.06	.14	.29	.45	.63

ROADWAY RATING CALCULATIONS

Roadway Rating Table

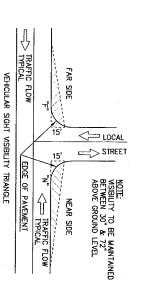
			
Project Description			
Worksheet Flow Element Method Solve For	2-16' Lanes w/5in R Irregular Channel Manning's Formula Discharge	olled Curb and Side	valk 1% Super
Input Data			
Channel Slope Water Surface Elevation	0.005000 100.09		
Results			
Mannings Coefficient Elevation Range Discharge	0.015 99.56 to 100.42 40.00	cfs	
Flow Area Wetted Perimeter Top Width	12.5 40.01 39.90	ft	
Actual Depth Critical Elevation Critical Slope	0.54 100.10 0.004877	ft ft/ft	
Velocity Velocity Head Specific Energy Froude Number Flow Type	3.21 0.16 100.25 1.01 Supercritical	ft	

Natural Channel Points		
Station (ft)	Elevation (ft)	
0+95.00	100.10	
1+00.00	100.00	
1+00.25	99.97	
1+00.50	99.90	
1+00.75	99.80	
1+01.00	99.69	
1+01.25	99.61	
1+01.50	99.57	
1+01.75	99.56	
1+02.00	99.58	
1+18.00	99.74	
1+34.00	99.90	
1+34.25	99.88	
1+34.50	99.89	
1+34.75	99.93	
1+35.00	100.01	
1+35.25	100.12	
1+35.50	100.22	
1+35.75	100.29	
1+36.00	100.32	
1+41.00	100.42	


Roadway Rating Table

Project Description Worksheet 2-16' Lanes w/5in Rolled Curb and Sidewalk 1% Super Flow Element Irregular Channel Method Manning's Formula Solve For Discharge Input Data Water Surface 100.09 ft Elevation

Attribute	Minimum	Maximum	Increment
Channel Slope (ft/ft)	0.005000	0.030000	0.002000


Channel	Discharge	Velocity	Flow Area	Wetted	Top Width
Slope (ft/ft)	(cfs)	(ft/s)	(ft²)	Perimeter	(ft)
				(ft)	1
0.005000	40.00	3.21	12.5	40.01	39.90
0.007000	47.33	3.79	12.5	40.01	39.90
0.009000	53.67	4.30	12.5	40.01	39.90
0.011000	59.33	4.76	12.5	40.01	39.90
0.013000	64.50	5.17	12.5	40.01	39.90
0.015000	69.28	5.55	12.5	40.01	39.90
0.017000	73.76	5.91	12.5	40.01	39.90
0.019000	77.98	6.25	12.5	40.01	39.90
0.021000	81.98	6.57	12.5	40.01	39.90
0.023000	85.79	6.88	12.5	40.01	39.90
0.025000	89.44	7.17	12.5	40.01	39.90
0.027000	92.95	7.45	12.5	40.01	39.90
0.029000	96.33	7.72	12.5	40.01	39.90

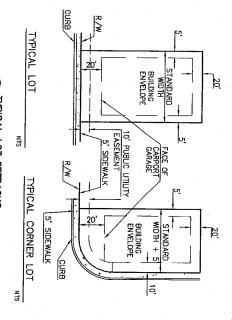
A TYPICAL LOT DRAINAGE

PUBLIC UTILITY, ROADWAY MAINTENANCE, SIGNAGE & LANDSCAPE EASEMENT-SEE PLAN SHEETS FOR LOCATIONS

B TYPICAL SUPER ELEVATED STREET SECTION NTS

SIGHT VISIBILITY TRIANGLE DETAIL

⑨ LOCAL STREETS: "F" = 190'
COCHIE CANYON TRAIL: "F" = 470'
ADONIS ROAD : "F" = 470' "N" = 240"
"N" = 600"


IVI WI L A

PSOMAS

80 E Winner Bod, Shir 110, Incan, II 5519
1ril (520) 292-2300 (800) 441-5975
1ril (520) 292-2800 (800) 441-5975
1ril (520) 292-200 (800) 441-5975
1ril (520) 292-200 (800) 441-5975

SCHEDULE

- SECOND INSTALLMENT OF 2004 TAXES A LIEN, PAYABLE ON OR BEFORE MARCH 1, 2005., AND DELINQUENT MAY 1, 2005
- ANY CHARGE UPON SAID LAND BY REASON OF ITS INCLUSION IN CONTINENTAL RANCH BUSINESS PARK ASSOCIATION (ALL ASSESSMENTS DUE AND PAYABLE ARE PAID.)
- ANY CHARGE UPON SAID LAND BY REASON OF ITS INCLUSION IN CORTARE WATER USERS ASSOCIATION AND /OR CORTARO MARANA IRRIGATION DISTRICT: (ALL ASSESSMENTS DUE AND PAYABLE ARE PAID.)
- RESERVATIONS OR EXCEPTIONS IN PATERITS, OR IN ACTS AUTHORIZING THE ISSUANCE THERCOF.
- WATER RIGHTS, CLAIMS OR TITLE TO WATER, WHETHER OR NOT SHOWN BY THE PUBLIC RECORDS.
- ANY MATTER ARISING BY REASON OF RESERVATION OF UNDERGROUND WATER AS SET FORTH IN INSTRUMENT RECORDED IN BOOK 314 OF DEEDS, PAGE 445, AND INCLUSION OF SAID LAND WITHIN THE BOUNDARIES OF THE CORTARO—MARANA IRRIGATION DISTRICT AND/OR THE CORTARO WATER USER'S ASSOCIATION.
- THE RIGHTS OR CLAIMS OF TITLE, IF ANY, BY THE STATE OF ARIZONA TO ANY PORTION OF THE PROPERTY DESCRIBED IN SCHEDULE A BEING LOCATED IN THE BED OF ANY RIVER OF DRY WASH
- COVENANTS, CONDITIONS AND RESTRICTIONS IN THE DOCUMENT RECORDED AS DOCKET 6512, PAGE 605 AND IN DOCKET 6512, PAGE 611 OF OFFICIAL RECORDS, (AFFECTS THAT PORTION LYING OUT OF THE SUBDIVIDED PORTION OF SECTION 27) BUT DELETING ANY COVENANT, CONDITION OR RESTRICTION INDICATING A PREFERENCE, LIMITATION OR DISCRIMINATION BASED ON RACE, COLOR, RELIGION, SEC, RESTRICTIONS VIOLATE TITLE 42, SECTION 3604(C), OF THE UNITED STATES CODES.
- õ COVENANTS, CONDITIONS AND RESTRICTIONS IN THE DOCUMENT RECORDED AS DOCKET 6528, PAGE 790 OF OFFICIAL RECORDS. (AFFECTS THAT PORTION LYING OUT OF THE SUBDIVIDED PORTION OF SECTION 27) BUT DELETING ANY COVENANT, CONDITION OR RESTRICTION WIDICATING A PREFERENCE, LIMITATION OR DISCRIMINATION BASED ON RACE, COLOR, RELIGION, SEC, HANDICAP: FAMILIAR STATUS OR NATIONAL ORIGIN, TO THE EXTENT SUCH COVENANTS, CONDITIONS OR RESTRICTIONS WOLATE TILE 42, SECTION 3604(C), OF THE UNITED STATES CODES.
- = COVENANTS, CONDITIONS AND RESTRICTIONS IN THE DOCUMENT RECORDED AS DOCKET 7724, PAGE 1059, DOCKET 8796, PAGE 1991, DOCKET 9727, PAGE 1988 AND DOCKET 10231, PAGE 113, ASSIGNMENT IN DOCKET 7843, PAGE 101, DOCKET 9301, PAGE 1767, DOCKET 9665, PAGE 1507 AND DOCKET 12041, PAGE 574 OF OFFICIAL RECORDS, BUT DELETING ANY COVENANT, CONDITION OR RESTRICTION INDICATING A PREFERENCE, LIMITATION OR DISCORBINATION BASED ON RACE, COLOR, RELIGION, SEX, HANDICAP, FAMILIAL STATUS, OR NATIONAL ORIGIN, TO THE EXTENT SUCH BASED ON RACE, COLOR, RELIGION, SEX, HANDICAP, FAMILIAL STATUS, OR NATIONAL ORIGIN, TO THE EXTENT SUCH BASED ON RACE, COLOR, RELIGION, SEX, HANDICAP, FAMILIAL STATUS, OR NATIONAL ORIGIN, TO THE EXTENT SUCH BASED ON RACE, COLOR, RELIGION, SEX, HANDICAP, FAMILIAL STATUS, OR NATIONAL ORIGIN, TO THE EXTENT SUCH BASED ON PAGE 1015, DOCKET 1024, PAGE 1024, PAGE 103, PAGE 103, PAGE 103, PAGE 103, PAGE 104, PAGE 1
- COVENANTS, CONDITIONS AND RESTRICTIONS IN THE DOCUMENT RECORDED AS DOCKET 10895, PAGE 282 OF OFFICIAL RECORDS, BUT DELETING ANY COVENANT, CONDITION OR RESTRICTIONINDICATING A PREFERENCE, LIMITATION OR DISCRIMINATION BASED ON RACE, COLOR, RELIGION, SEC, HANDICAP, FAMILIAL STATUS, OR NATIONAL ORIGIN, TO THE EXTENT SUCH COVENANTS, CONDITIONS OR RESTRICTIONS VIOLATE TITLE 42, SECTION 3604(C), OF THE UNITED STATES CODES.
- 12 EASEMENTS, RESTRICTIONS, RESERVATIONS, CONDITIONS AND SET-BACK LINES AS SET FORTH ON THE PLAT RECORDED IN BOOK ____ OF MAPS, PAGE ____ BUT DELETING ANY COVENANT, CONDITION OR RESTRICTION INDICATING A PREFERENCE, LIMITATION OR DISCRIMINATION BASED ON RACE, COLOR, RELIGION, SEX, HANDICAP, FAMILIAL STATUS OR NATIONAL ORIGIN TO THE EXTENT SUCH COVENANTS, CONDITIONS OR RESTRICTIONS VIOLATE 42 USC 3604(C).
- RELEASE BY SOUTHWEST GAS CORPORATION OF EASEMENTS SET FORTH IN SAID INSTRUMENT RECORDED IN DOCKET 10915, PAGE 531 RELEASE BY TUCSON LIECTRIC POWER COMPANY, AM ARIZONA, CORPORATION OF EASEMENTS SET FORTH IN SAID INSTRUMENT RECORDED IN DOCKET 10918, PAGE 2784 RESOLUTION NO. 2000—02 AEANIDONING EASEMENTS LOCATED IN PEPPERTREE RANCH BUSNESS PARK PLAT, RECORDED IN DOCKET 11709, PAGE 1779, RECRECORDED IN DOCKET 11580, PAGE 3055, PARTIAL RELEASE OF SEWER EASEMENTS RECORDED IN DOCKET 11555,
- RELEASE BY SOUTHWEST GAS CORPORATION OF EASEMENTS SET FORTH IN SAID INSTRUMENT RECORDED IN DOCKET 10915, PAGE 531. RELEASE BY TUCSON ELECTRIC POWER COMPANY, AN ARIZONA CORPORATION OF EASEMENTS SET FORTH IN SAID INSTRUMENT RECORDED IN DOCKET 10918, PAGE 2784. RESOLUTION NO. 2000-02 ABANDONING EASEMENTS LOCATED IN PEPPERTREE RANCH BUSINESS PARK PLAT, RECORDED IN DOCKET 11209, PAGE 1479, RE-RECORDED IN DOCKET 11580, PAGE 3055.
- LACK OF ACCESS TO INTERSTATE 10 AND GRANT OF ACCESS TO A TWO-WAY FRONTAGE ROAD CONNECTION WITH INTERSTATE HIGHWAY 10 AND CORTARO INTERCHANGE AS CONTAINED IN ORDER OF CONDEMNATION RECORDED DECEMBER 27, 1956 IN DOCKET 2647, PAGE 20. (BLOCK 2)
- AGREEMENT BETWEEN PIMA COUNTY, ARIZONA, A BODY POLITIC, AND STEWART TITLE & TRUST OF TUCSON, AS TRUSTEE UNDER TRUST NO. 1746, RECORDED SEPTEMBER 19, 1979, IN DOCKET 6116, PAGE 719.
- ភ្ AGREEMENT BY AND BETWEEN PIMA COUNTY, ARIZONA, AND STEWART TITLE & TRUST OF TUCSON, UNDER TRUST NO. 1746, RECORDED NOVEMBER 30, 1979 IN DOCKET 6165, PAGE 1435.
- 17. 6 AN EASEMENT FOR WATER LINES AND FACILITIES AND INCIDENTAL PURPOSES, RECORDED AS DOCKET 6829, PAGE 980 OF OFFICIAL RECORDS, (BLOCK 2)
- AGREEMENT BETWEEN UNION ROCK AND MATERIALS CORPORATION AND CORTARO WATER USER'S ASSOCIATION AND CORTARO-MARANA IRRIGATION DISTRICT RECORDED OCTOBER 9, 1984 IN DOCKET 7384, PAGE 1103. (AFFECTS THAT PORTION LYING OUT OF THE SUBDIVIDED PORTION OF SECTION 27)
- ALL MATTERS CONTAINED IN THE GOLF COURSE WATER AGREEMENT, BETWEEN CORTARO WATER USER'S ASSOCIATION, AN ARIZONA NON-PROFIT CORPORATION ACTING AS AGENT FOR CORTARO MARANA IRRIGATION DISTRICT, AND SVPLINKS, L.L.C. AND ARIZONA LIMITED LIABILITY COMPANY, RECORDED IN DOCKET 1066, PAGE 368.
- ALL MATTERS BY REASON OF THE AGREEMENT FOR WATER SERVICES WITH THE CITY OF TUCSON, AS SET FORTH IN THE INSTRUMENT RECORDED DECEMBER 17, 1988 IN DOCKET 10945, PAGE 1021. (ALL PARCELS)
- ALL MATTERS BY REASON OF ORDINANCE NO. 9931 BY THE MAYOR AND COUNCIL OF THE TOWN OF MARANA, ARIZONA RECORDED IN DOCKET 11196, PAGE 1175. (BLOCK LAND PORTION BLOCK 2)
- 21. RESERVATIONS OF EXISTING SEWER, GAS, WATER OR SIMILAR PIPELINES AND APPURITENANCES, CANALS LATERALS OR DITCHES AND APPURITENANCES, ELECTRIC, TELEPHONE, AND SIMILAR LINES AND APPURITENANCES IN THE RESOLUTION NO 2000-02 ABANDONING EASEMENTS LOCATED IN PEPPERIFEER RANCH BUSINESS PARK PLAT, RECORDED IN DOCKET 11209, PAGE E1479, RE-RECORDED IN DOCKET 11580, PAGE 3055.
- ALL MATTERS AS SET FORTH IN THE EASEMENT AND COVENANT AND RIGHTS INCIDENT THERETO, IN INSTRUMENT RECORDED IN DOCKET 11577, PAGE 3809.
- 23. RESOLUTION NO. 2002.01 AMENDING THE CONTINENTAL RANCH SPECIFIC PLAN BY THE MAYOR AND COUNCIL OF THE TOWN OF MARANA. ARIZONA RECORDED IN DOCKET 11742, PAGE 2744.
- AN EASEMENT FOR ELECTRIC AND COMMUNICATION LINES AND FACILITIES AND INCIDENTAL PURPOSES RECORDED AS DOCKET 11855, PAGE 1276 OF OFFICIAL RECORDS.
- AN EASEMENT FOR ELECTRIC AND COMMUNICATION LINES AND FACILITIES AND INCIDENTAL PURPOSES, RECORDED AS DOCKET 1215B, PAGE 754 OF OFFICIAL RECORDS. AN EASEMENT FOR ELECTRIC AND COMMUNICATION LINES AND FACILITIES AND INCIDENTAL PURPOSES, RECORDED AS DOCKET 11995, PAGE 6299 OF OFFICIAL RECORDS.

D TYPICAL LOT SETBACKS
SEE 08: 06 OF LAND
DEVELOPMENT CODE

PRELIMINARY PLAT

S01-024

IHE I PINES PHASE II

LOTS 1-284 & COMMON AREAS 'A' & 'B'
COMMON AREAS USES: 'A' RECREATION AND OPEN SPACE
'B' DRAINAGE AND OPEN SPACE

BEING A RESUBDIVISION OF A PORTION OF OF BLOCK 1 AND BLOCK 3 OF FINAL BLOCK PLAT, MARANA GOLF, CONTINENTIAL RANCH, BK, 58 M&P, PG, 15 IN A PORTION OF THE S 1/2 OF SECTION 22, THE NW 1/4 OF SECTION 26 AND THE N 1/2 OF SECTION 27, T 12 S, R 12 E, G&SRB&M, TOWN OF MARANA, PIMA COUNTY, ARIZONA.

ဖ

DATE 11-15-05

ભ 9

SCUPPER DESIGN

Project Name: Pines II

Project Number # : 05082-01

_ Made by __ _ Checked By

CBR

12/1/2005

Reference: PC DEV SERV

V SERV Check

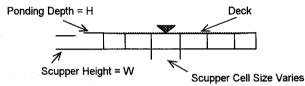
_ Date _ Date

PIMA COUNTY SCUPPER DESIGN

General Equations

Orifice

$$Q = C_s A H^{1/2}$$


where

A = Effective Area

Cs = Orifice Coefficient 5.35 Cf = Clogging Factor 1.00

H = Depth of ponding in feet

Q = 100-year Peak Discharge (cfs)

For Sidewalk Scupper

Solution D1

Orifice

 $Q_{100} = 34$

 $C_s = 5.35$

 $C_f = 1.00$

H = 0.75

 $\mathbf{A} = 7.3$

A=WL

where

W = Opening Height = 0.500 feet

L = Effective Length of Opening in feet

L = 15 feet

Concentration Point	Q ₁₀₀ (cfs)	Ponding Depth (ft)	Area (ft²)	Opening Height (ft)	Effective Length (ft)
D 1	34	0.75	7.3	0.5	15
D4	20	0.75	4.3	0,5	9
D 6	26	0.75	5.6	0.5	12
D10	13	0.75	2.8	0.5	6
D12	15	0.75	3.2	0.5	7
D15	26	0.75	5.6	0.5	12
D17	18	0.75	3.9	0.5	8
D 19	17	0.75	3.7	0.5	8
D20	28	0.75	6.0	0.5	13

DEPRESSED CURB DESIGN

Sheet1

Project Name: Pines II

Date 12/1/05 Project Number #: 05082-02 CBR Made by Reference: COT SMDDFM Checked By Date _

Depressed Curb Calculations

General Equation

$$L = C_f \frac{Q}{C_s Y^{3/2}}$$

where

L Length of Opening (ft)

Weir Coefficient = 3 for L>12 2.3 for L<12

Height of Opening (ft)

100-year Peak Discharge (cfs)

Solution

For 5-inch Depressed Curb (D3)

Q = 1 $C_D = 2.3$ Y = 0.5cfs

0.5 ft

Concentration Point	Q ₁₀₀ (cfs)	Opening Height (ft)	Effect. Length (ft)
D3	1	0.5	1
D 9	3	0.5	4
OS-2	1	0.5	1
OS-4	3	0.5	4
OS-5	1	0.5	1
OS-6	1	0.5	1

CATCH BASIN DESIGN

Project Name: Pines II

Reference: PC DEV SERV

Project Number #: 05082-01 Made by

__ Made by ____ __ Checked By

CBR

Date 11/27/2005

__ Date _

CATCH BASIN DESIGN

General Equations

Orifice

$$Q = C_s A H^{1/2} (C_f^{-1})$$

where

A = Effective Area

Cs = Orifice Coefficient 5.35

Cf = Clogging Factor 1.50

H = Depth of ponding in feet

Q = 100-year Peak Discharge (cfs)

Solution CP 1

Orifice

 $\overline{\mathbf{Q}_{100}} = 17$

 $C_s = 5.35$

 $C_f = 1.50$

 $\mathbf{H} = 0.75$

 $\mathbf{A} = 5.5$

A=WL

where

W = Opening Height

= 0.417 feet

L = Effective Length of Opening in feet =

14 feet

		Ponding		Opening	Effective
Concentration	Q_{100}	Depth	Area	Height	Length
Point	(cfs)	(ft)	(ft ²)	(ft)	(ft)
D14	17	0.75	5.5	0.4167	14

CHANNEL DESIGN CALCULATIONS

CHANNEL 1 – CP OS-1

5	77.94	
Project Description		
Worksheet	CP OS-1	
Flow Element	Trapezoidal Channel	
Method	Manning's Formula	
Solve For	Channel Depth	
Input Data		
Mannings	0.035	
Coefficient	0.005000 ##	
Channel Slope	0.005000 ft/ft	
Left Side Slope	3.00 H:V	
Right Side Slope	3.00 H:V	
Bottom Width	3.00 ft	
Discharge	44.00 cfs	
Results		
Depth	1.75 ft	
Flow Area	14.4 ft²	
Wetted Perimeter	14.06 ft	
Top Width	13.49 ft	
Critical Depth	1.27 ft	
Critical Slope	0.020121 ft/ft	
Velocity	3.05 ft/s	
Velocity Head	0.14 ft	
Specific Energy	1.89 ft	
Froude Number	0.52	
Flow Type	Subcritical	

CHANNEL 2 - CP D3

Project Description		
Worksheet	D3	
Flow Element	Triangular Channel	
Method	Manning's Formula	
Solve For	Channel Depth	
Input Data		
Mannings	0.030	
Coefficient		
Channel Slope	0.005000 ft/ft	
Left Side Slope	12.00 H:V	
Right Side Slope	12.00 H:V	
Discharge	1.00 cfs	
Results		
Depth	0.29 ft	
Flow Area	1.0 ft ²	
Wetted Perimeter	7.06 ft	
Top Width	7.03 ft	
Critical Depth	0.21 ft	
Critical Slope	0.027806 ft/ft	
Velocity	0.97 ft/s	
Velocity Head	0.01 ft	
Specific Energy	0.31 ft	
Froude Number	0.45	
Flow Type	Subcritical	

CHANNEL 3 - CP D2

CP D2	· · · · · · · · · · · · · · · · · · ·
Triangular Channel	
Manning's Formula	
Channel Depth	
0.030	
	e. 10.
66.00	cfs
1.61	ft
15.5	ft²
19.58	ft
19.31	ft
1.50	ft
0.014711	ft/ft
4.25	ft/s
0.28	ft
1.89	ft
0.83	
Subcritical	
	Triangular Channel Manning's Formula Channel Depth 0.030 0.010000 6.00 6.00 66.00 1.61 15.5 19.58 19.31 1.50 0.014711 4.25 0.28 1.89 0.83

CHANNEL 4 – CP D5

Project Description		
Worksheet	D5	
Flow Element	Triangular Channel	
Method	Manning's Formula	
Solve For	Channel Depth	
Input Data		
Mannings	0.030	
Coefficient		
Channel Slope	0.010000	ft/ft
Left Side Slope	12.00	H : V
Right Side Slope	12.00	H : V
Discharge	18.00	cfs
Results		
Depth	0.76	ft
Flow Area	6.9	ft²
Wetted Perimeter	18.31	ft
Top Width	18.25	ft
Critical Depth	0.67	ft
Critical Slope	0.018927	ft/ft
Velocity	2.59	ft/s
Velocity Head	0.10	ft
Specific Energy	0.86	ft
Froude Number	0.74	
Flow Type	Subcritical	

CHANNEL 5 - CP D7

<u> </u>		
Project Description		
Worksheet	CP D7	
Flow Element	Trapezoidal Channel	
Method	Manning's Formula	
Solve For	Channel Depth	
Input Data		
Mannings	0.035	
Coefficient		
Channel Slope	0.010000	
Left Side Slope		H : V
Right Side Slope		H : V
Bottom Width	3.00	
Discharge	35.00	cts
Results		
Depth	1.34	ft
Flow Area	9.4	
Wetted Perimeter	11.48	
Top Width	11.04	
Critical Depth	1.13	
Critical Slope	0.020760	ft/ft
Velocity	3.72	ft/s
Velocity Head	0.21	ft
Specific Energy	1.56	ft
Froude Number	0.71	
Flow Type	Subcritical	

CHANNEL 6 - CP D11

Project Description		
Worksheet	D11	
Flow Element	Triangular Channel	
Method	Manning's Formula	
Solve For	Channel Depth	
Input Data		
Mannings	0.030	
Coefficient		
Channel Slope	0.010000 ft/ft	
Left Side Slope	12.00 H:V	
Right Side Slope	12.00 H:V	
Discharge	13.00 cfs	
Results		
Depth	0.67 ft	
Flow Area	5.4 ft²	
Wetted Perimeter	16.22 ft	
Top Width	16.16 ft	
Critical Depth	0.59 ft	
Critical Slope	0.019767 ft/ft	
Velocity	2.39 ft/s	
Velocity Head	0.09 ft	
Specific Energy	0.76 ft	
Froude Number	0.73	
Flow Type	Subcritical	

CHANNEL 7 - CP OS-5

Project Description	
Worksheet	CP OS-5
Flow Element	Triangular Channel
Method	Manning's Formula
Solve For	Channel Depth
Input Data	
Mannings	0.030
Coefficient	
Channel Slope	0.005000 ft/ft
Left Side Slope	12.00 H:V
Right Side Slope	12.00 H:V
Discharge	1.00 cfs
Results	
Depth	0.29 ft
Flow Area	1.0 ft²
Wetted Perimeter	7.06 ft
Top Width	7.03 ft
Critical Depth	0.21 ft
Critical Slope	0.027806 ft/ft
Velocity	0.97 ft/s
Velocity Head	0.01 ft
Specific Energy	0.31 ft
Froude Number	0.45
Flow Type	Subcritical

CHANNEL 8 – CP D13

Project Description		
Worksheet	CP D13	
Flow Element	Trapezoidal Channel	
Method	Manning's Formula	
Solve For	Channel Depth	
Input Data		
Mannings	0.035	
Coefficient		
Channel Slope	0.010000 ft/ft	
Left Side Slope	3.00 H:V	
Right Side Slope	3.00 H:V	
Bottom Width	3.00 ft	
Discharge	26.00 cfs	
Results		
Depth	1.16 ft	
Flow Area	7.6 ft²	
Wetted Perimeter	10.36 ft	
Top Width	9.98 ft	
Critical Depth	0.97 ft	
Critical Slope	0.021619 ft/ft	
Velocity	3.44 ft/s	
Velocity Head	0.18 ft	
Specific Energy	1.35 ft	
Froude Number	0.70	
Flow Type	Subcritical	

CHANNEL 9 - CP D16

	· · · · · · · · · · · · · · · · · · ·	
Project Description		
Worksheet	CP D16	
Flow Element	Trapezoidal Chan	inel
Method	Manning's Formul	la
Solve For	Channel Depth	
		*
Input Data		
Mannings	0.035	
Coefficient		
Channel Slope	0.010000	
Left Side Slope		H : V
Right Side Slope		H : V
Bottom Width	3.00	
Discharge	39.00	cfs
Results		
Depth	1.41	ft
Flow Area	10.2	ft²
Wetted Perimeter	11.92	ft
Top Width	11.46	ft
Critical Depth	1.19	ft .
Critical Slope	0.020458	ft/ft
Velocity	3.83	
Velocity Head	0.23	
Specific Energy	1.64	ft
Froude Number	0.72	
Flow Type	Subcritical	

CHANNEL 10 - CP D17

Project Description	
Worksheet	CP D17
Flow Element	Trapezoidal Channel
Method	Manning's Formula
Solve For	Channel Depth
Input Data	
Mannings	0.035
Coefficient	
Channel Slope	0.010000 ft/ft
Left Side Slope	3.00 H:V
Right Side Slope	3.00 H:V
Bottom Width	3.00 ft
Discharge	18.00 cfs
Results	
Depth	0.97 ft
Flow Area	5.8 ft ²
Wetted Perimeter	9.16 ft
Top Width	8.84 ft
Critical Depth	0.79 ft
Critical Slope	0.022746 ft/ft
Velocity	3.12 ft/s
Velocity Head	0.15 ft
Specific Energy	1.13 ft
Froude Number	0.68
Flow Type	Subcritical

CHANNEL 11 - CP D21

Project Description		·	
Worksheet Flow Element Method Solve For	D21 Triangular Channel Manning's Formula Channel Depth		
Input Data	· .		
Mannings	0.030		
Coefficient Channel Slope	0.010000	ft/ft	
Left Side Slope	12.00		
Right Side Slope	12.00		
Discharge	29.00		
Results			
Depth	0.91	ft	
Flow Area	9.9	ft²	
Wetted Perimeter	21.90	ft	
Top Width	21.83	ft	
Critical Depth	0.82	ft	
Critical Slope	0.017760	ft/ft	
Velocity	2.92	ft/s	
Velocity Head	0.13	ft	
Specific Energy	1.04	ft	
Froude Number	0.76		
Flow Type	Subcritical		

CHANNEL 12 - CP D8

Project Description			
Worksheet	CP D8		
Flow Element	Trapezoidal Channel		
Method	Manning's Formula		
Solve For	Channel Depth		
-			
Input Data			
Mannings	0.030		
Coefficient			
Channel Slope	0.003900		
Left Side Slope		H:V	
Right Side Slope		H:V	
Bottom Width	80.00		
Discharge	1,101.00	CIS	
Results			
Depth	2.32	ft	
Flow Area	228.4	ft²	
Wetted Perimeter	117.37	ft	
Top Width	117.08	ft	
Critical Depth	1.70		
Critical Slope	0.011519		
Velocity	4.82		
Velocity Head	0.36		
Specific Energy	2.68	ft	
Froude Number	0.61		
Flow Type	Subcritical		

CHANNEL 12 - CP D18

Project Description			
Worksheet	CP D18		
Flow Element	Trapezoidal Channel		
Method	Manning's Formula		
Solve For	Channel Depth		
Input Data			
Mannings	0.030		
Coefficient			
Channel Slope	0.003900		
Left Side Slope		H:V	
Right Side Slope		H:V	
Bottom Width	80.00		
Discharge	1,101.00	cfs	
Results		 	
Depth	2.32	ft	
Flow Area	228.4	ft²	
Wetted Perimeter	117.37	ft	
Top Width	117.08	ft	
Critical Depth	1.70	ft	
Critical Slope	0.011519	ft/ft	
Velocity	4.82		
Velocity Head	0.36		
Specific Energy	2.68	ft	
Froude Number	0.61		
Flow Type	Subcritical		

CHANNEL 12 - CP D22

Project Description			
Worksheet	CP D22		
Flow Element	Trapezoidal Channel		
Method	Manning's Formula		
Solve For	Channel Depth		
Input Data			
Mannings	0.030		
Coefficient			
Channel Slope	0.003900 ft/ft		
Left Side Slope	8.00 H:V		
Right Side Slope	8.00 H : V		
Bottom Width	80.00 ft		
Discharge	1,101.00 cfs		
Results			
Depth	2.32 ft		
Flow Area	228.4 ft²		
Wetted Perimeter	117.37 ft		
Top Width	117.08 ft		
Critical Depth	1.70 ft		
Critical Slope	0.011519 ft/ft		
Velocity	4.82 ft/s		
Velocity Head	0.36 ft		
Specific Energy	2.68 ft		
Froude Number	0.61		
Flow Type	Subcritical		

Sheet1

Project Name: Pines II

Project Number #: 05082-78 Made by CBR Date 11/30/05
Reference: SMDDFPM Checked By Date

Calculation of Channel Parameters

General Equations:

1) Minimum Channel Freeboard

$$FB = 1/6 \left[Y + \frac{V^2}{2g} \right]$$
 Eq 8.4

Where

FB = Freeboard (ft)

Y = Depth of Flow (ft)

V = average velocity of flow, (fps)

g = Acceleration due to gravity = 32.2 ft/sec2

2) Minimum Channel Radius

$$R_c = 3T$$

Froude Number < 0.86

Where

R_c = Minimum Radius of Curvature Centerline (ft)

T = Channel Topwidth at Watersurface (ft)

$$R_c = \frac{4V^2T}{gY}$$
 Froude Number >0.86 Eq 8.12

Where

R_c = Minimum Radius of Curvature Centerline (ft)

T = Channel Topwidth at Watersurface (ft)

V = average velocity of flow, (fps)

Y = Hydraulic Depth of Flow (ft)

		Y	\mathbf{V}	FB -	Froude	T	Rc
Channe	el C.P	(ft)	(fps)	(ft)	Number	(ft)	(ft)
1	OS-1	1.75	3.05	0.32	0.52	13.49	40.47
2	3	0.29	0.97	0.05	0.45	7.03	21.09
3	2	1.61	4.25	0.32	0.83	19.31	57.93
4	5	0.76	2.59	0.14	0.74	18.25	54.75
5	7	1.34	3.72	0.26	0.71	11.04	33.12
6	11	0.67	2.39	0.13	0.73	16.16	48.48
7	OS-5	0.29	0.97	0.05	0.45	7.03	21.1
8	13	1.16	3.44	0.22	0.70	9.98	29.9
9	16	1.41	3.83	0.27	0.72	11.46	34.4
10	17	0.97	3.12	0.19	0.68	8.84	26.5
11	21	0.91	2.92	0.17	0.76	21.83	65.5
12	D8, D18, D22	2.32	4.82	0.45	0.61	117.08	351.2

CULVERT DESIGN

Calculations for Culvert at CP D5

PIPE CULVERT ANALYSIS COMPUTATION OF CULVERT PERFORMANCE CURVE

November 27, 2005

	======					
PROGRAM INPUT DATA						
DESCRIPTION	VALUE					
Culvert Diameter (ft)	2.0					
FHWA Chart Number	1					
FHWA Scale Number (Type of Culvert Entrance)	1					
Manning's Roughness Coefficient (n-value)	0.013					
Entrance Loss Coefficient of Culvert Opening 0						
Culvert Length (ft)	65.0					
Invert Elevation at Downstream end of Culvert (ft)	100.0					
Invert Elevation at Upstream end of Culvert (ft)	100.65					
Culvert Slope (ft/ft)	0.01					
Starting Flow Rate (cfs)	18.0					
Incremental Flow Rate (cfs)	1.0					
Ending Flow Rate (cfs)	18.0					
Starting Tailwater Depth (ft)	1.53					
Incremental Tailwater Depth (ft)						
Ending Tailwater Depth (ft)						
	=======					
COMPUTATION RESULTS						
Flow Tailwater Headwater (ft) Normal Critical Depth at						
Rate Depth Inlet Outlet Depth Depth Outlet						
(cfs) (ft) Control (ontrol (ft) (ft)	(fps)					
18.0 1.53 2.64 0.0 1.35 1.53 1.35						
10.0 1.55 2.64 0.0 1.35 1.53 1.35	1.33					
HYDROCALC Hydraulics for Windows, Version 1.2a Copyright (c) 1996						
Dodson & Associates, Inc., 5629 FM 1960 West, Suite 314, Houston, TX 770	169					
Phone: (281)440-3787, Fax: (281)440-4742, Email:software@dodson-hydro.com	. • •					

All Rights Reserved.

Calculations for Culvert at CP D8

BOX CULVERT ANALYSIS COMPUTATION OF CULVERT PERFORMANCE CURVE

November 27, 2005

PROGRAM INPUT DATA						
DESCRIPTION		VALUE				
Culvert Span (ft)		10.0				
Culvert Rise (ft)		4.0				
FHWA Chart Number		9				
FHWA Scale Number (Type of Culvert Entrance)						
Manning's Roughness Coefficient (n'value)		0.013				
Entrance Loss Coefficient of Culvert Opening		0.2				
Culvert Length (ft)		55.0				
Invert Elevation at Downstream end of Culvert (ft)		100.0				
Invert Elevation at Upstream end of Culvert (ft)		100.39				
Culvert Slope (ft/ft)		0.0071				
Starting Flow Rate (cfs)		202.0				
Incremental Flow Rate (cfs)						
Ending Flow Rate (cfs)						
Briding From Race (CIS)						
Starting Tailwater Depth (ft)		2.33				
Incremental Tailwater Depth (ft)		1.0				
Ending Tailwater Depth (ft)						
	========	:=======				
COMPUTATION RESULTS						
Flow Tailwater Headwater (ft) Normal Critical	Depth at	Outlet				
Rate Depth Inlet Outlet Depth Depth	Outlet	Velocity				
(cfs) (ft) Control Control (ft) (ft)						
202.0 2.33 3.78 0.0 1.76 2.33						
2.33	1.70	11.40				

HYDROCALC Hydraulics for Windows, Version 1.2a Copyright (c) 1996 Dodson & Associates, Inc., 5629 FM 1960 West, Suite 314, Houston, TX 77069 Phone: (281) 440-3787, Fax: (281) 440-4742, Email:software@dodson-hydro.com All Rights Reserved.

Calculations for Culvert at CP D19

BOX CULVERT ANALYSIS COMPUTATION OF CULVERT PERFORMANCE CURVE

November 27, 2005

Culvert Span (ft)				10.0				
Culvert Span (ft)				10.0				
Culvert Rise (ft)	 							
FHWA Chart Number	 ance)			4.0				
FHWA Scale Number (Type of Culvert Entra Manning's Roughness Coefficient (n-value	ance)	FINA Charle Number (Deve of G.)						
Manning's Roughness Coefficient (n-value	FHWA Scale Number (Type of Culvert Entrance)							
Entrance Loss Coefficient of Culvert One	Manning's Roughness Coefficient (n-value)							
	ening			0.2				
Culvert Length (ft)				55.0				
Invert Elevation at Downstream end of Co	ulvert (ft).			100.0				
Invert Elevation at Upstream end of Cul	vert (ft)			100.39				
Culvert Slope (ft/ft)				0.007				
Starting Flow Rate (cfs)				202.0				
Incremental Flow Rate (cfs)				1.0				
Ending Flow Rate (cfs)				202.0				
				20210				
Starting Tailwater Depth (ft)				2.33				
Incremental Tailwater Depth (ft)								
Ending Tailwater Depth (ft)				2.33				
====================================		=======	:=======	:=======				
COMPUTATION	ON RESULTS							
Flow Tailwater Headwater (ft)	Normal	Critical	Depth at	Outlet				
Rate Depth Inlet Outle	. Depth	Depth	Outlet	Velocity				
(cfs) (ft) Control Control	l (ft)	(ft)	(ft)	(fps)				
202.0 2.33 3.78 0.0				11.48				

HYDROCALC Hydraulics for Windows, Version 1.2a Copyright (c) 1996
Dodson & Associates, Inc., 5629 FM 1960 West, Suite 314, Houston, TX 77069
Phone: (281) 440-3787, Fax: (281) 440-4742, Email: software@dodson-hydro.com
All Rights Reserved.

SPLASH PAD CALCULATIONS

Splash Pad Design for CP D1 36" RCP

DISCHARGE	CULVERT DIAM	TAILWATER DEPTH	DURATION
44.00CFS	3.00FT	1.50FT	5.00MIN
MAX SCOUR LGT	MAX SCOUR DEPTH	MAX SCOUR WIDTH	SCOUR VOLUME

MAX DEPTH OCCURS 12.6 FT DOWNSTREAM OF THE CULVERT OUTLET

SCOUR PRO	FILE	SCOUR X-SECT AT	LOC MAX DEPTH
LENGTH	DEPTH	DIST FROM CL	DEPTH
0.0	0.00	0.0	3.85
3.1	1.23	0.7	3.73
6.3	2.89	1.4	3.50
9.4	3.62	2.1	3.00
12.6	3.85	2.8	1.96
15.7	3.69	3.6	0.89
18.9	3.31	4.3	0.35
22.0	2.69	5.0	0.15
25.1	1.92	5.7	0.08
28.3	1.00	6.4	0.04
31.4	0.00	7.1	0.00

STONE DIAM(D50) REQUIRED TO PREVENT SCOUR UNDER ALL TAILWATER CONDITION

==> 5.72 INCHES ON A HORIZONTAL BLANKET 2D50 THICK.

LENGTH OF HORIZONTAL STONE PROTECTION BLANKET REQUIRED TO PREVENT SCOUR

UNDER ALL TAILWATER CONDITIONS = 25.4FT

THE RIPRAP BLANKET SHOULD BE 3 CULVERT DIAMETERS WID E AT THE CULVERT AND

SHOULD BE FLARED 1 (NORMAL TO THE CULVE RT CL) ON 2 (PARALLEL TO THE CULVERT

CENTERLINE AND HAVE A THICKNESS EQUAL TO 2D50.

IF THE COMPUTED STONE SIZE (D50) IS NOT REALISTIC, IT CAN BE REDUCED BY 38 AND 59 PERCENT IF PREFORMED SCOUR HOLES 0.5 OR 1.0 CULVERT DIAMETER

DEEP, RESPECTIVELY, ARE USED. THE BOTTOM OF THE SCOUR HOLE SHOULD BE 3 CULVERT DIAMETER LONG AND 2 CULVERT DIAMETERS WIDE AND SHOULD BEGIN 1.5 AND 3.0 CULVERT DIAMETERS DOWNSTREAM FROM THE CULVERT EXIT PORTAL FOR SCOUR HOLE DEPTH OF 0.5 AND 1.0 CULVERT DIAMETERS, RESPECTIVELY.

IT SHOULD HAVE 1V TO 3H SIDE SLOPES IN ALL DIRECTIONS AND HAVE A RIP RAP THICKNESS EQUAL TO 2D50.

Splash Pad Design for CP D1 15' Scupper

DISCHARGE CULVERT WIDTH HEIGHT TAILWATER DEPTH DURATION

34.00CFS 15.00FT 0.50FT 0.25FT 5.00MIN

MAX SCOUR LGT MAX SCOUR DEPTH MAX SCOUR WIDTH SCOUR VOLUME

9.4FT 0.9FT 5.0FT 5.8FT3

MAX DEPTH OCCURS 3.8 FT DOWNSTREAM OF THE CULVERT OUTLET

SCOUR PR	OFILE	SCOUR X-SECT AT	LOC MAX DEPTH
LENGTH	DEPTH	DIST FROM CL	DEPTH
0.0	0.00	0.0	0.87
0.9	0.28	0.3	0.85
1.9	0.65	0.5	0.79
2.8	0.82	0.8	0.68
3.8	0.87	1.0	0.44
4.7	0.84	1.3	0.20
5.6	0.75	1.5	0.08
6.6	0.61	1.8	0.03
7.5	0.44	2.0	0.02
8.4	0.23	2.3	0.01
9.4	0.00	2.5	0.00

STONE DIAM(D50) REQUIRED TO PREVENT SCOUR UNDER ALL TAILWATER CONDITION

==> 2.84 INCHES ON A HORIZONTAL BLANKET 2D50 THICK.

LENGTH OF HORIZONTAL STONE PROTECTION BLANKET REQUIRED TO PREVENT SCOUR

UNDER ALL TAILWATER CONDITIONS = 9.6FT

THE RIPRAP BLANKET SHOULD BE 3 CULVERT DIAMETERS WID E AT THE CULVERT AND

SHOULD BE FLARED 1 (NORMAL TO THE CULVE RT CL) ON 2 (PARALLEL TO THE CULVERT

CENTERLINE AND HAVE A THICKNESS EQUAL TO 2D50.

IF THE COMPUTED STONE SIZE (D50) IS NOT REALISTIC, IT CAN BE REDUCED BY 38 AND 59 PERCENT IF PREFORMED SCOUR HOLES 0.5 OR 1.0 CULVERT DIAMETER

DEEP, RESPECTIVELY, ARE USED. THE BOTTOM OF THE SCOUR HOLE SHOULD BE 3 CULVERT DIAMETER LONG AND 2 CULVERT DIAMETERS WIDE AND SHOULD BEGIN 1.5 AND 3.0 CULVERT DIAMETERS DOWNSTREAM FROM THE CULVERT EXIT PORTAL FOR SCOUR HOLE DEPTH OF 0.5 AND 1.0 CULVERT DIAMETERS, RESPECTIVELY.

IT SHOULD HAVE 1V TO 3H SIDE SLOPES IN ALL DIRECTIONS AND HAVE A RIP RAP THICKNESS EQUAL TO 2D50.

CUL.OUT

Splash Pad Design for CP D2 21' Channel

DISCHARGE CULVERT WIDTH HEIGHT TAILWATER DEPTH **DURATION** 21.00FT 1.75FT 66.00CFS 5.00MIN 1.75FT MAX SCOUR DEPTH MAX SCOUR LGT MAX SCOUR WIDTH SCOUR VOLUME 10.9FT 1.7FT 4.2FT 11.2FT3

MAX DEPTH OCCURS 4.4 FT DOWNSTREAM OF THE CULVERT OUTLET

SCOUR PR	OFILE	SCOUR X-SECT AT	LOC MAX DEPTH
LENGTH	DEPTH	DIST FROM CL	DEPTH
0.0	0.00	0.0	1.71
1.1	0.55	0.2	1.65
2.2	1.28	0.4	1.55
3.3	1.60	0.6	1.33
4.4	1.71	0.8	0.87
5.5	1.64	1.1	0.39
6.5	1.47	1.3	0.15
7.6	1.19	1.5	0.07
8.7	0.85	1.7	0.03
9.8	0.44	1.9	0.02
10.9	0.00	2.1	0.00

STONE DIAM(D50) REQUIRED TO PREVENT SCOUR UNDER ALL TAILWATER CONDITION ==> 0.63 INCHES ON A HORIZONTAL BLANKET 2D50 THICK.

LENGTH OF HORIZONTAL STONE PROTECTION BLANKET REQUIRED TO PREVENT SCOUR UNDER ALL TAILWATER CONDITIONS = 7.1FT

THE RIPRAP BLANKET SHOULD BE 3 CULVERT DIAMETERS WID E AT THE CULVERT AND SHOULD BE FLARED 1(NORMAL TO THE CULVE RT CL) ON 2(PARALLEL TO THE CULVERT CENTERLINE AND HAVE A THICKNESS EQUAL TO 2D50.

IF THE COMPUTED STONE SIZE (D50) IS NOT REALISTIC, IT CAN BE REDUCED BY 38 AND 59 PERCENT IF PREFORMED SCOUR HOLES 0.5 OR 1.0 CULVERT DIAMETER DEEP, RESPECTIVELY, ARE USED. THE BOTTOM OF THE SCOUR HOLE SHOULD BE 3 CULVERT DIAMETER LONG AND 2 CULVERT DIAMETERS WIDE AND SHOULD BEGIN 1.5 AND 3.0 CULVERT DIAMETERS DOWNSTREAM FROM THE CULVERT EXIT PORTAL FOR SCOUR HOLE DEPTH OF 0.5 AND 1.0 CULVERT DIAMETERS, RESPECTIVELY. IT SHOULD HAVE 1V TO 3H SIDE SLOPES IN ALL DIRECTIONS AND HAVE A RIP RAP THICKNESS EQUAL TO 2D50.

Splash Pad Design for CP D4 9' Scupper

DISCHARGE CULVERT WIDTH HEIGHT TAILWATER DEPTH DURATION
20.00CFS 9.00FT 0.50FT 0.25FT 5.00MIN

MAX SCOUR LGT MAX SCOUR DEPTH MAX SCOUR WIDTH SCOUR VOLUME
9.2FT 0.9FT 4.9FT 5.6FT3

MAX DEPTH OCCURS 3.7 FT DOWNSTREAM OF THE CULVERT OUTLET

SCOUR PRO	DFILE	SCOUR X-SECT AT	LOC MAX DEPTH
LENGTH	DEPTH	DIST FROM CL	DEPTH
0.0	0.00	0.0	0.87
0.9	0.28	0.2	0.84
1.8	0.65	0.5	0.79
2.8	0.81	0.7	0.68
3.7	0.87	1.0	0.44
4.6	0.83	1.2	0.20
5.5	0.74	1.5	0.08
6.5	0.61	1.7	0.03
7.4	0.43	2.0	0.02
8.3	0.23	2.2	0.01
9.2	0.00	2.5	0.00

STONE DIAM(D50) REQUIRED TO PREVENT SCOUR UNDER ALL TAILWATER CONDITION

==> 2.77 INCHES ON A HORIZONTAL BLANKET 2D50 THICK.

LENGTH OF HORIZONTAL STONE PROTECTION BLANKET REQUIRED TO PREVENT SCOUR

UNDER ALL TAILWATER CONDITIONS = 9.4FT

THE RIPRAP BLANKET SHOULD BE 3 CULVERT DIAMETERS WID E AT THE CULVERT AND

SHOULD BE FLARED 1 (NORMAL TO THE CULVE RT CL) ON 2 (PARALLEL TO THE CULVERT

CENTERLINE AND HAVE A THICKNESS EQUAL TO 2D50.

IF THE COMPUTED STONE SIZE (D50) IS NOT REALISTIC, IT CAN BE REDUCED BY 38 AND 59 PERCENT IF PREFORMED SCOUR HOLES 0.5 OR 1.0 CULVERT DIAMETER

DEEP, RESPECTIVELY, ARE USED. THE BOTTOM OF THE SCOUR HOLE SHOULD BE 3 CULVERT DIAMETER LONG AND 2 CULVERT DIAMETERS WIDE AND SHOULD BEGIN 1.5 AND 3.0 CULVERT DIAMETERS DOWNSTREAM FROM THE CULVERT EXIT PORTAL FOR SCOUR HOLE DEPTH OF 0.5 AND 1.0 CULVERT DIAMETERS, RESPECTIVELY.

IT SHOULD HAVE 1V $\,$ TO 3H SIDE SLOPES IN ALL DIRECTIONS AND HAVE A RIP RAP THICKNESS EQUAL TO 2D50.

Splash Pad Design for CP D7 11' Channel

DISCHARGE CULVERT WIDTH HEIGHT TAILWATER DEPTH **DURATION** 35.00CFS 11.00FT 1.34FT 1.34FT 5.00MIN MAX SCOUR LGT MAX SCOUR DEPTH MAX SCOUR WIDTH SCOUR VOLUME 11.2FT 1.5FT 4.7FT 11.5FT3

MAX DEPTH OCCURS 4.5 FT DOWNSTREAM OF THE CULVERT OUTLET

SCOUR PRO	FILE	SCOUR X-SECT AT	LOC MAX DEPTH
LENGTH	DEPTH	DIST FROM CL	DEPTH
0.0	0.00	0.0	1.52
1.1	0.49	0.2	1.48
2.2	1.14	0.5	1.39
3.4	1.43	0.7	1.19
4.5	1.52	0.9	0.78
5.6	1.46	1.2	0.35
6.7	1.31	1.4	0.14
7.8	1.07	1.7	0.06
9.0	0.76	1.9	0.03
10.1	0.40	2.1	0.02
11.2	0.00	2.4	0.00

STONE DIAM(D50) REQUIRED TO PREVENT SCOUR UNDER ALL TAILWATER CONDITION ==> 0.84 INCHES ON A HORIZONTAL BLANKET 2D50 THICK.

LENGTH OF HORIZONTAL STONE PROTECTION BLANKET REQUIRED TO PREVENT SCOUR UNDER ALL TAILWATER CONDITIONS = 8.2FT

THE RIPRAP BLANKET SHOULD BE 3 CULVERT DIAMETERS WID E AT THE CULVERT AND SHOULD BE FLARED 1(NORMAL TO THE CULVE RT CL) ON 2(PARALLEL TO THE CULVERT CENTERLINE AND HAVE A THICKNESS EQUAL TO 2D50.

IF THE COMPUTED STONE SIZE (D50) IS NOT REALISTIC, IT CAN BE REDUCED BY 38 AND 59 PERCENT IF PREFORMED SCOUR HOLES 0.5 OR 1.0 CULVERT DIAMETER DEEP, RESPECTIVELY, ARE USED. THE BOTTOM OF THE SCOUR HOLE SHOULD BE 3 CULVERT DIAMETER LONG AND 2 CULVERT DIAMETERS WIDE AND SHOULD BEGIN 1.5 AND 3.0 CULVERT DIAMETERS DOWNSTREAM FROM THE CULVERT EXIT PORTAL FOR SCOUR HOLE DEPTH OF 0.5 AND 1.0 CULVERT DIAMETERS, RESPECTIVELY. IT SHOULD HAVE 1V TO 3H SIDE SLOPES IN ALL DIRECTIONS AND HAVE A RIP RAP THICKNESS EQUAL TO 2D50.

Splash Pad Design for CP D8 5-4x10 RCBC

DISCHARGE CULVERT WIDTH HEIGHT TAILWATER DEPTH DURATION

220.00CFS 10.00FT 4.00FT 2.00FT 5.00MIN

MAX SCOUR LGT MAX SCOUR DEPTH MAX SCOUR WIDTH SCOUR VOLUME

41.1FT 5.1FT 18.5FT 548.7FT3

MAX DEPTH OCCURS 16.5 FT DOWNSTREAM OF THE CULVERT OUTLET

SCOUR PR	OFILE	SCOUR X-SECT AT	LOC MAX DEPTH
LENGTH	DEPTH	DIST FROM CL	DEPTH
0.0	0.00	0.0	5.08
4.1	1.63	0.9	4.93
8.2	3.81	1.9	4.62
12.3	4.78	2.8	3.96
16.5	5.08	3.7	2.59
20.6	4.88	4.6	1.17
24.7	4.37	5.6	0.46
28.8	3.56	6.5	0.20
32.9	2.54	7.4	0.10
37.0	1.32	8.3	0.05
41.1	0.00	9.3	0.00

STONE DIAM(D50) REQUIRED TO PREVENT SCOUR UNDER ALL TAILWATER CONDITION

==> 7.37 INCHES ON A HORIZONTAL BLANKET 2D50 THICK.

LENGTH OF HORIZONTAL STONE PROTECTION BLANKET REQUIRED TO PREVENT SCOUR

UNDER ALL TAILWATER CONDITIONS = 33.0FT

THE RIPRAP BLANKET SHOULD BE 3 CULVERT DIAMETERS WID E AT THE CULVERT AND

SHOULD BE FLARED 1 (NORMAL TO THE CULVE RT CL) ON 2 (PARALLEL TO THE CULVERT

CENTERLINE AND HAVE A THICKNESS EQUAL TO 2D50.

IF THE COMPUTED STONE SIZE (D50) IS NOT REALISTIC, IT CAN BE REDUCED BY 38 AND 59 PERCENT IF PREFORMED SCOUR HOLES 0.5 OR 1.0 CULVERT DIAMETER

DEEP, RESPECTIVELY, ARE USED. THE BOTTOM OF THE SCOUR HOLE SHOULD BE 3 CULVERT DIAMETER LONG AND 2 CULVERT DIAMETERS WIDE AND SHOULD BEGIN 1.5 AND 3.0 CULVERT DIAMETERS DOWNSTREAM FROM THE CULVERT EXIT PORTAL FOR SCOUR HOLE DEPTH OF 0.5 AND 1.0 CULVERT DIAMETERS, RESPECTIVELY.

IT SHOULD HAVE 1V TO 3H SIDE SLOPES IN ALL DIRECTIONS AND HAVE A RIP RAP THICKNESS EQUAL TO 2D50.

** Note: Discharge of 220 cfs x 5 Cells = 1100 cfs total discharge.

Splash Pad Design for CP D10 13' Scupper

DISCHARGE CULVERT WIDTH HEIGHT TAILWATER DEPTH DURATION

13.00CFS 13.00FT 0.50FT 0.25FT 5.00MIN

MAX SCOUR LGT MAX SCOUR DEPTH MAX SCOUR WIDTH SCOUR VOLUME

5.2FT 0.6FT 2.4FT 1.1FT3

MAX DEPTH OCCURS 2.1 FT DOWNSTREAM OF THE CULVERT OUTLET

SCOUR PRO	OFILE	SCOUR X-SECT AT	LOC MAX DEPTH
LENGTH	DEPTH	DIST FROM CL	DEPTH
0.0	0.00	0.0	0.64
0.5	0.21	0.1	0.62
1.0	0.48	0.2	0.58
1.6	0.60	0.4	0.50
2.1	0.64	0.5	0.33
2.6	0.62	0.6	0.15
3.1	0.55	0.7	0.06
3.7	0.45	0.8	0.03
4.2	0.32	0.9	0.01
4.7	0.17	1.1	0.01
5.2	0.00	1.2	0.00

STONE DIAM(D50) REQUIRED TO PREVENT SCOUR UNDER ALL TAILWATER CONDITION

==> 0.96 INCHES ON A HORIZONTAL BLANKET 2D50 THICK.

LENGTH OF HORIZONTAL STONE PROTECTION BLANKET REQUIRED TO PREVENT SCOUR

UNDER ALL TAILWATER CONDITIONS = 4.2FT

THE RIPRAP BLANKET SHOULD BE 3 CULVERT DIAMETERS WID E AT THE CULVERT AND

SHOULD BE FLARED 1 (NORMAL TO THE CULVE RT CL) ON 2 (PARALLEL TO THE CULVERT

CENTERLINE AND HAVE A THICKNESS EQUAL TO 2D50.

IF THE COMPUTED STONE SIZE (D50) IS NOT REALISTIC, IT CAN BE REDUCED BY 38 AND 59 PERCENT IF PREFORMED SCOUR HOLES 0.5 OR 1.0 CULVERT DIAMETER

DEEP, RESPECTIVELY, ARE USED. THE BOTTOM OF THE SCOUR HOLE SHOULD BE 3 CULVERT DIAMETER LONG AND 2 CULVERT DIAMETERS WIDE AND SHOULD BEGIN 1.5 AND 3.0 CULVERT DIAMETERS DOWNSTREAM FROM THE CULVERT EXIT PORTAL FOR SCOUR HOLE DEPTH OF 0.5 AND 1.0 CULVERT DIAMETERS, RESPECTIVELY.

IT SHOULD HAVE 1V TO 3H SIDE SLOPES IN ALL DIRECTIONS AND HAVE A RIP RAP THICKNESS EQUAL TO 2D50.

CUL.OUT

Splash Pad Design for CP D13 12' Channel

CULVERT WIDTH DISCHARGE HEIGHT TAILWATER DEPTH **DURATION** 26.00CFS 12.00FT 1.50FT 5.00MIN 1.50FT MAX SCOUR LGT MAX SCOUR DEPTH MAX SCOUR WIDTH SCOUR VOLUME 8.5FT 1.4FT 3.2FT 5.3FT3

MAX DEPTH OCCURS 3.4 FT DOWNSTREAM OF THE CULVERT OUTLET

SCOUR PR	OFILE	SCOUR X-SECT AT	LOC MAX DEPTH
LENGTH	DEPTH	DIST FROM CL	DEPTH
0.0	0.00	0.0	1.39
0.8	0.44	0.2	1.35
1.7	1.04	0.3	1.26
2.5	1.30	0.5	1.08
3.4	1.39	0.6	0.71
4.2	1.33	0.8	0.32
5.1	1.19	1.0	0.12
5.9	0.97	1.1	0.06
6.8	0.69	1.3	0.03
7.6	0.36	1.4	0.01
8.5	0.00	1.6	0.00

STONE DIAM(D50) REQUIRED TO PREVENT SCOUR UNDER ALL TAILWATER CONDITION ==> 0.45 INCHES ON A HORIZONTAL BLANKET 2D50 THICK.

LENGTH OF HORIZONTAL STONE PROTECTION BLANKET REQUIRED TO PREVENT SCOUR UNDER ALL TAILWATER CONDITIONS = 5.3FT

THE RIPRAP BLANKET SHOULD BE 3 CULVERT DIAMETERS WID E AT THE CULVERT AND SHOULD BE FLARED 1(NORMAL TO THE CULVE RT CL) ON 2(PARALLEL TO THE CULVERT CENTERLINE AND HAVE A THICKNESS EQUAL TO 2D50.

IF THE COMPUTED STONE SIZE (D50) IS NOT REALISTIC, IT CAN BE REDUCED BY 38 AND 59 PERCENT IF PREFORMED SCOUR HOLES 0.5 OR 1.0 CULVERT DIAMETER DEEP, RESPECTIVELY, ARE USED. THE BOTTOM OF THE SCOUR HOLE SHOULD BE 3 CULVERT DIAMETER LONG AND 2 CULVERT DIAMETERS WIDE AND SHOULD BEGIN 1.5 AND 3.0 CULVERT DIAMETERS DOWNSTREAM FROM THE CULVERT EXIT PORTAL FOR SCOUR HOLE DEPTH OF 0.5 AND 1.0 CULVERT DIAMETERS, RESPECTIVELY. IT SHOULD HAVE 1V TO 3H SIDE SLOPES IN ALL DIRECTIONS AND HAVE A RIP RAP THICKNESS EQUAL TO 2D50.

CUL.OUT

Splash Pad Design for CP D16 13.5' Channel

DISCHARGE	CULVERT WIDTH	HEIGHT	TAILWATER DEPTH	DURATION
39.00CFS	13.50FT	1.75FT	1.75FT	5.00MIN
MAX SCOUR LO	ST MAX SCOUR	DEPTH	MAX SCOUR WIDTH	SCOUR VOLUME
10.3FT	1.7F	T	3.9FT	9.5FT3

MAX DEPTH OCCURS 4.1 FT DOWNSTREAM OF THE CULVERT OUTLET

SCOUR PR	OFILE	SCOUR X-SECT AT	LOC MAX DEPTH
LENGTH	DEPTH	DIST FROM CL	DEPTH
0.0	0.00	0.0	1.65
1.0	0.53	0.2	1.60
2.1	1.24	0.4	1.50
3.1	1.55	0.6	1.29
4.1	1.65	0.8	0.84
5.1	1.59	1.0	0.38
6.2	1.42	1.2	0.15
7.2	1.16	1.4	0.07
8.2	0.83	1.6	0.03
9.2	0.43	1.8	0.02
10.3	0.00	2.0	0.00

STONE DIAM(D50) REQUIRED TO PREVENT SCOUR UNDER ALL TAILWATER CONDITION ==> 0.56 INCHES ON A HORIZONTAL BLANKET 2D50 THICK.

LENGTH OF HORIZONTAL STONE PROTECTION BLANKET REQUIRED TO PREVENT SCOUR UNDER ALL TAILWATER CONDITIONS = 6.6FT

THE RIPRAP BLANKET SHOULD BE 3 CULVERT DIAMETERS WID E AT THE CULVERT AND SHOULD BE FLARED 1(NORMAL TO THE CULVE RT CL) ON 2(PARALLEL TO THE CULVERT CENTERLINE AND HAVE A THICKNESS EQUAL TO 2D50.

IF THE COMPUTED STONE SIZE (D50) IS NOT REALISTIC, IT CAN BE REDUCED BY 38 AND 59 PERCENT IF PREFORMED SCOUR HOLES 0.5 OR 1.0 CULVERT DIAMETER DEEP, RESPECTIVELY, ARE USED. THE BOTTOM OF THE SCOUR HOLE SHOULD BE 3 CULVERT DIAMETER LONG AND 2 CULVERT DIAMETERS WIDE AND SHOULD BEGIN 1.5 AND 3.0 CULVERT DIAMETERS DOWNSTREAM FROM THE CULVERT EXIT PORTAL FOR SCOUR HOLE DEPTH OF 0.5 AND 1.0 CULVERT DIAMETERS, RESPECTIVELY. IT SHOULD HAVE 1V TO 3H SIDE SLOPES IN ALL DIRECTIONS AND HAVE A RIP RAP THICKNESS EQUAL TO 2D50.

Splash Pad Design for CP D17 18' Scupper

DISCHARGE CULVERT WIDTH HEIGHT TAILWATER DEPTH DURATION
18.00CFS 18.00FT 0.50FT 0.25FT 5.00MIN
MAX SCOUR LGT MAX SCOUR DEPTH MAX SCOUR WIDTH SCOUR VOLUME
5.2FT 0.6FT 2.4FT 1.1FT3

MAX DEPTH OCCURS 2.1 FT DOWNSTREAM OF THE CULVERT OUTLET

SCOUR PRO	OFILE	SCOUR X-SECT A	T LOC MAX DEPTH
LENGTH	DEPTH	DIST FROM CL	DEPTH
0.0	0.00	0.0	0.64
0.5	0.21	0.1	0.62
1.0	0.48	0.2	0.58
1.6	0.60	0.4	0.50
2.1	0.64	0.5	0.33
2.6	0.62	0.6	0.15
3.1	0.55	0.7	0.06
3.7	0.45	0.8	0.03
4.2	0.32	0.9	0.01
4.7	0.17	1.1	0.01
5.2	0.00	1.2	0.00

STONE DIAM(D50) REQUIRED TO PREVENT SCOUR UNDER ALL TAILWATER CONDITION

==> 0.96 INCHES ON A HORIZONTAL BLANKET 2D50 THICK.

LENGTH OF HORIZONTAL STONE PROTECTION BLANKET REQUIRED TO PREVENT SCOUR

UNDER ALL TAILWATER CONDITIONS = 4.2FT

THE RIPRAP BLANKET SHOULD BE 3 CULVERT DIAMETERS WID E AT THE CULVERT AND

SHOULD BE FLARED 1 (NORMAL TO THE CULVE RT CL) ON 2 (PARALLEL TO THE CULVERT

CENTERLINE AND HAVE A THICKNESS EQUAL TO 2D50.

IF THE COMPUTED STONE SIZE (D50) IS NOT REALISTIC, IT CAN BE REDUCED BY 38 AND 59 PERCENT IF PREFORMED SCOUR HOLES 0.5 OR 1.0 CULVERT DIAMETER

DEEP, RESPECTIVELY, ARE USED. THE BOTTOM OF THE SCOUR HOLE SHOULD BE 3 CULVERT DIAMETER LONG AND 2 CULVERT DIAMETERS WIDE AND SHOULD BEGIN 1.5 AND 3.0 CULVERT DIAMETERS DOWNSTREAM FROM THE CULVERT EXIT PORTAL FOR SCOUR HOLE DEPTH OF 0.5 AND 1.0 CULVERT DIAMETERS, RESPECTIVELY.

IT SHOULD HAVE 1V TO 3H SIDE SLOPES IN ALL DIRECTIONS AND HAVE A RIP RAP THICKNESS EQUAL TO 2D50.

Splash Pad Design for CP D18 5-4x10 RCBC

DISCHARGE CULVERT WIDTH HEIGHT TAILWATER DEPTH DURATION
220.00CFS 10.00FT 4.00FT 2.00FT 5.00MIN
MAX SCOUR LGT MAX SCOUR DEPTH MAX SCOUR WIDTH SCOUR VOLUME
41.1FT 5.1FT 18.5FT 548.7FT3

MAX DEPTH OCCURS 16.5 FT DOWNSTREAM OF THE CULVERT OUTLET

SCOUR PRO	OFILE	SCOUR X-SECT AT	LOC MAX DEPTH
LENGTH	DEPTH	DIST FROM CL	DEPTH
0.0	0.00	0.0	5.08
4.1	1.63	0.9	4.93
8.2	3.81	1.9	4.62
12.3	4.78	2.8	3.96
16.5	5.08	3.7	2.59
20.6	4.88	4.6	1.17
24.7	4.37	5.6	0.46
28.8	3.56	6.5	0.20
32.9	2.54	7.4	0.10
37.0	1.32	8.3	0.05
41.1	0.00	9.3	0.00

STONE DIAM(D50) REQUIRED TO PREVENT SCOUR UNDER ALL TAILWATER CONDITION

==> 7.37 INCHES ON A HORIZONTAL BLANKET 2D50 THICK.

LENGTH OF HORIZONTAL STONE PROTECTION BLANKET REQUIRED TO PREVENT SCOUR

UNDER ALL TAILWATER CONDITIONS = 33.0FT

THE RIPRAP BLANKET SHOULD BE 3 CULVERT DIAMETERS WID E AT THE CULVERT AND

SHOULD BE FLARED 1 (NORMAL TO THE CULVE RT CL) ON 2 (PARALLEL TO THE CULVERT

CENTERLINE AND HAVE A THICKNESS EQUAL TO 2D50.

IF THE COMPUTED STONE SIZE (D50) IS NOT REALISTIC, IT CAN BE REDUCED BY 38 AND 59 PERCENT IF PREFORMED SCOUR HOLES 0.5 OR 1.0 CULVERT DIAMETER

DEEP, RESPECTIVELY, ARE USED. THE BOTTOM OF THE SCOUR HOLE SHOULD BE 3 CULVERT DIAMETER LONG AND 2 CULVERT DIAMETERS WIDE AND SHOULD BEGIN 1.5 AND 3.0 CULVERT DIAMETERS DOWNSTREAM FROM THE CULVERT EXIT PORTAL FOR SCOUR HOLE DEPTH OF 0.5 AND 1.0 CULVERT DIAMETERS, RESPECTIVELY.

IT SHOULD HAVE 1V TO 3H SIDE SLOPES IN ALL DIRECTIONS AND HAVE A RIP RAP THICKNESS EQUAL TO 2D50.

** Note: Discharge of 220 cfs x 5 Cells = 1100 cfs total discharge.

Splash Pad Design for CP D19 17' Scupper

DISCHARGE CULVERT WIDTH HEIGHT TAILWATER DEPTH DURATION
17.00CFS 17.00FT 0.50FT 0.25FT 5.00MIN
MAX SCOUR LGT MAX SCOUR DEPTH MAX SCOUR WIDTH SCOUR VOLUME
5.2FT 0.6FT 2.4FT 1.1FT3

MAX DEPTH OCCURS 2.1 FT DOWNSTREAM OF THE CULVERT OUTLET

SCOUR PRO	OFILE	SCOUR X-SECT A	AT LOC MAX DEPTH	I
LENGTH	DEPTH	DIST FROM CL	DEPTH	
0.0	0.00	0.0	0.64	
0.5	0.21	0.1	0.62	
1.0	0.48	0.2	0.58	
1.6	0.60	0.4	0.50	
2.1	0.64	0.5	0.33	
2.6	0.62	0.6	0.15	
3.1	0.55	0.7	0.06	
3.7	0.45	0.8	0.03	
4.2	0.32	0.9	0.01	
4.7	0.17	1.1	0.01	
5.2	0.00	1.2	0.00	

STONE DIAM(D50) REQUIRED TO PREVENT SCOUR UNDER ALL TAILWATER CONDITION

==> 0.96 INCHES ON A HORIZONTAL BLANKET 2D50 THICK.

LENGTH OF HORIZONTAL STONE PROTECTION BLANKET REQUIRED TO PREVENT SCOUR

UNDER ALL TAILWATER CONDITIONS = 4.2FT

THE RIPRAP BLANKET SHOULD BE 3 CULVERT DIAMETERS WID E AT THE CULVERT

SHOULD BE FLARED 1 (NORMAL TO THE CULVE RT CL) ON 2 (PARALLEL TO THE CULVERT

CENTERLINE AND HAVE A THICKNESS EQUAL TO 2D50.

IF THE COMPUTED STONE SIZE (D50) IS NOT REALISTIC, IT CAN BE REDUCED BY 38 AND 59 PERCENT IF PREFORMED SCOUR HOLES 0.5 OR 1.0 CULVERT DIAMETER

DEEP, RESPECTIVELY, ARE USED. THE BOTTOM OF THE SCOUR HOLE SHOULD BE 3 CULVERT DIAMETER LONG AND 2 CULVERT DIAMETERS WIDE AND SHOULD BEGIN 1.5 AND 3.0 CULVERT DIAMETERS DOWNSTREAM FROM THE CULVERT EXIT PORTAL FOR SCOUR HOLE DEPTH OF 0.5 AND 1.0 CULVERT DIAMETERS, RESPECTIVELY.

IT SHOULD HAVE 1V TO 3H SIDE SLOPES IN ALL DIRECTIONS AND HAVE A RIP RAP THICKNESS EQUAL TO 2D50.

Splash Pad Design for CP D20 28' Scupper

DISCHARGE CULVERT WIDTH HEIGHT TAILWATER DEPTH DURATION
28.00CFS 28.00FT 0.50FT 0.25FT 5.00MIN

MAX SCOUR LGT MAX SCOUR DEPTH MAX SCOUR WIDTH SCOUR VOLUME
5.2FT 0.6FT 2.4FT 1.1FT3

MAX DEPTH OCCURS 2.1 FT DOWNSTREAM OF THE CULVERT OUTLET

${ t FILE}$	SCOUR X-SECT	AT	LOC	MAX	DEPTH
DEPTH	DIST FROM C	Ĺ	DEI	PTH	
0.00	0.0		0.6	54	
0.21	0.1		0.6	52	
0.48	0.2		0.5	58	
0.60			0.5	50	
0.64	0.5		0.3	33	
0.62	0.6		0.3	15	
0.55	0.7		0.0	06	
0.45	0.8		0.0	03	
0.32	0.9		0.0	01	
0.17	1.1		0.0	01	
0.00	1.2		0.0	00	
	DEPTH 0.00 0.21 0.48 0.60 0.64 0.62 0.55 0.45 0.32 0.17	DEPTH DIST FROM CT 0.00 0.0 0.21 0.1 0.48 0.2 0.60 0.4 0.64 0.5 0.62 0.6 0.55 0.7 0.45 0.8 0.32 0.9 0.17 1.1	DEPTH DIST FROM CL 0.00 0.0 0.21 0.1 0.48 0.2 0.60 0.4 0.64 0.5 0.62 0.6 0.55 0.7 0.45 0.8 0.32 0.9 0.17 1.1	DEPTH DIST FROM CL DET 0.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	DEPTH DIST FROM CL DEPTH 0.00 0.0 0.64 0.21 0.1 0.62 0.48 0.2 0.58 0.60 0.4 0.50 0.64 0.5 0.33 0.62 0.6 0.15 0.55 0.7 0.06 0.45 0.8 0.03 0.32 0.9 0.01 0.17 1.1 0.01

STONE DIAM(D50) REQUIRED TO PREVENT SCOUR UNDER ALL TAILWATER CONDITION

==> 0.96 INCHES ON A HORIZONTAL BLANKET 2D50 THICK.

LENGTH OF HORIZONTAL STONE PROTECTION BLANKET REQUIRED TO PREVENT SCOUR

UNDER ALL TAILWATER CONDITIONS = 4.2FT

THE RIPRAP BLANKET SHOULD BE 3 CULVERT DIAMETERS WID E AT THE CULVERT AND

SHOULD BE FLARED 1 (NORMAL TO THE CULVE RT CL) ON 2 (PARALLEL TO THE CULVERT

CENTERLINE AND HAVE A THICKNESS EQUAL TO 2D50.

IF THE COMPUTED STONE SIZE (D50) IS NOT REALISTIC, IT CAN BE REDUCED BY 38 AND 59 PERCENT IF PREFORMED SCOUR HOLES 0.5 OR 1.0 CULVERT DIAMETER

DEEP, RESPECTIVELY, ARE USED. THE BOTTOM OF THE SCOUR HOLE SHOULD BE 3 CULVERT DIAMETER LONG AND 2 CULVERT DIAMETERS WIDE AND SHOULD BEGIN 1.5 AND 3.0 CULVERT DIAMETERS DOWNSTREAM FROM THE CULVERT EXIT PORTAL FOR SCOUR HOLE DEPTH OF 0.5 AND 1.0 CULVERT DIAMETERS, RESPECTIVELY.

IT SHOULD HAVE 1V TO 3H SIDE SLOPES IN ALL DIRECTIONS AND HAVE A RIP RAP THICKNESS EQUAL TO 2D50.

Splash Pad Design for CP D22 125' Channel

DISCHARGE CULVERT WIDTH HEIGHT TAILWATER DEPTH DURATION

1101.00CFS 125.00FT 2.32FT 1.16FT 5.00MIN

MAX SCOUR LGT MAX SCOUR DEPTH MAX SCOUR WIDTH SCOUR VOLUME

22.2FT 2.8FT 9.8FT 88.0FT3

MAX DEPTH OCCURS 8.9 FT DOWNSTREAM OF THE CULVERT OUTLET

SCOUR PR	OFILE	SCOUR X-SECT	TA	LOC	$\mathbf{M}\mathbf{A}\mathbf{X}$	DEPTH
LENGTH	DEPTH	DIST FROM CI	Ļ	DEI	PTH	
0.0	0.00	0.0		2.8	34	
2.2	0.91	0.5		2.	76	
4.4	2.13	1.0		2.5	58	
6.7	2.67	1.5		2.2	22	
8.9	2.84	2.0		1.4	15	
11.1	2.73	2.5		0.6	55	
13.3	2.44	2.9		0.2	26	
15.6	1.99	3.4		0.3	11	
17.8	1.42	3.9		0.0	06	
20.0	0.74	4.4		0.0	03	
22.2	0.00	4.9		0.0	0.0	

STONE DIAM(D50) REQUIRED TO PREVENT SCOUR UNDER ALL TAILWATER CONDITION

==> 3.75 INCHES ON A HORIZONTAL BLANKET 2D50 THICK.

LENGTH OF HORIZONTAL STONE PROTECTION BLANKET REQUIRED TO PREVENT SCOUR

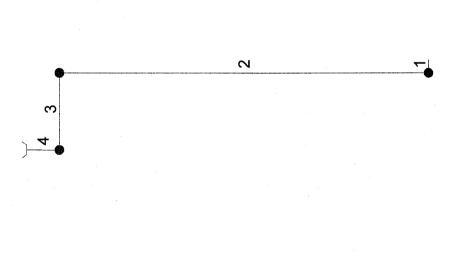
UNDER ALL TAILWATER CONDITIONS = 17.3FT

THE RIPRAP BLANKET SHOULD BE 3 CULVERT DIAMETERS WID E AT THE CULVERT AND

SHOULD BE FLARED 1 (NORMAL TO THE CULVE RT CL) ON 2 (PARALLEL TO THE CULVERT

CENTERLINE AND HAVE A THICKNESS EQUAL TO 2D50.

IF THE COMPUTED STONE SIZE (D50) IS NOT REALISTIC, IT CAN BE REDUCED BY 38 AND 59 PERCENT IF PREFORMED SCOUR HOLES 0.5 OR 1.0 CULVERT DIAMETER


DEEP, RESPECTIVELY, ARE USED. THE BOTTOM OF THE SCOUR HOLE SHOULD BE 3 CULVERT DIAMETER LONG AND 2 CULVERT DIAMETERS WIDE AND SHOULD BEGIN 1.5 AND 3.0 CULVERT DIAMETERS DOWNSTREAM FROM THE CULVERT EXIT PORTAL FOR SCOUR HOLE DEPTH OF 0.5 AND 1.0 CULVERT DIAMETERS, RESPECTIVELY.

IT SHOULD HAVE 1V TO 3H SIDE SLOPES IN ALL DIRECTIONS AND HAVE A RIP RAP THICKNESS EQUAL TO 2D50.

PRELIMINARY STORM DRAIN CALCULATIONS

SYSTEM 1

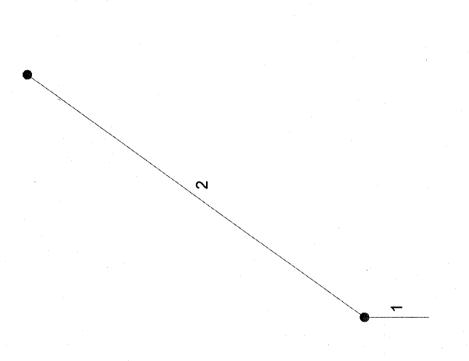
Hydraflow Plan View

Project file: System 1 - D1 OS-1.stm

IDF file: New.IDF.IDF

No. Lines: 4

11-28-2005


Line No.	Line ID	Flow rate (cfs)	Line size (in)	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line slope (%)	HGL down (ft)	HGL up (ft)	Minor loss (ft)	Dns line No.
1	CP D1	44.00	36 c	15.0	100.00	100.08	0.533	103.00	103.06	0.51	End
2	MH 1- MH 2	44.00	36 c	305.0	100.38	101.91	0.502	103.58	104.81	0.52	1
3	MH2 - MH 3	44.00	36 c	89.0	102.21	102.65	0.494	105.33*	105.72*	0.51	2
4	MH4-OS-1	44.00	36 c	27.0	102.95	103.09	0.519	106.23*	106.35*	0.51	3
										·	

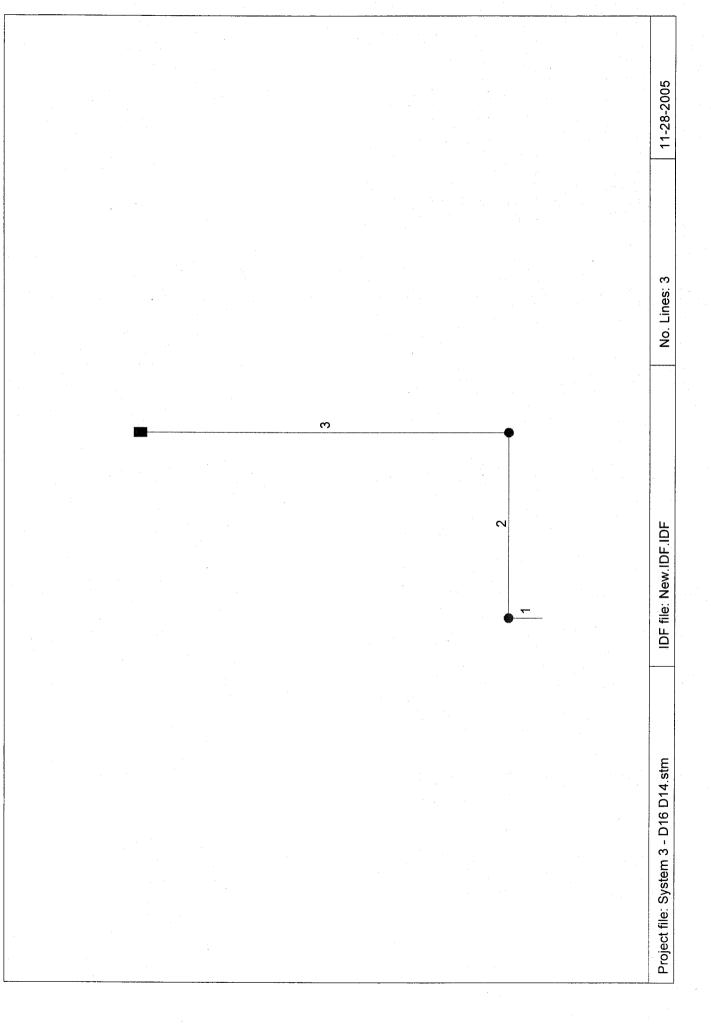
NOTES: c = circular; e = elliptical; b = box; Return period = 100 Yrs.; * Indicates surcharge condition.

Hydraflow Hydraulic Grade Line Computations

Minor	SS (H)	0.51	0.52	0.51	0.51		
JL 200#		0.85	0.85	0.85	0.85	τō	
	Enrgy loss (ft)	0.063	1.246	0.387	0.118	-28-200	
Check	Ave Sf (%)	0.422	0.408	0.435	0.435	Run Date: 11-28-2005	
	Sf (%)	0.408	0.381	0.435	0.435	Run	
	EGL elev (#)	103.67	105.42	106.32	106.95		
	Vel head (ft)	0.60	0.62	09.0	0.60	s: 4	
We	Vel (fVs)	6.23	6.29	6.22 (6.22 (Total number of lines: 4	
Upstream	Area (sqft)	7.06	7.00	7.07	7.07	ai numbe	
	Depth (ft)	2.98	2.90	3.00	3.00	Tot	
	HGL elev (ft)	103.06	104.81	105.72	106.35		
	Invert elev (ft)	100.08	101.91	102.65	103.09		,
Len	€	15.0	305	89.0	27.0		ned.
	St (%)	0.435 1	0.435 3	0.435 8	0.435 2		th assur
	EGL elev (ft) (103.60	104.18 0.	105.93 0	106.83 0.	New.IDF.IDF	** Critical depth assumed.
	Vel l	0.60	0.60	09:0	09:0		
c	Vel (ft/s)	6.23	6.23 0	6.23 0.	6.23 0.	I-D-F File:	assume
Downstream	Area (sqft)	7.07	7.07	7.07	7.07		'n depth
Dow	Depth /	3.00 7	3.00 7	3.00 7	3.00		, Crow
	HGL Delev	103.00	103.58 3	105.33	106.23 3	tm	103 (ft)
	Invert elev (ft)	100.00	100.38 10	102.21 10	102.95 10	Project File: System 1 - D1 OS-1.stm	NOTES: Initial tailwater elevation = 103 (ft), * Crown depth assumed.,
ď	lr (cfs)	44.00 10	44.00 10	44.00 10	44.00 10	tem 1 - I	ilwater e
Size	(in)	36 4	36 4	36 4	36 4	=ile: Sys	Initial ta
Line		. ←	3	<u>က</u>	4 	Project !	NOTES:

SYSTEM 2

11-28-2005 No. Lines: 2 IDF file: New.IDF.IDF Project file: New.stm


Hydraflow Hydraulic Grade Line Computations

Line	Size	ø			ă	Downstream	am am				Len				Upstream	am				Check	ᇂ	٦,	Minor
-	(ii)	(cfs)	Invert elev (ft)	HGL elev (ft)	Depth (ft)	Area (sqft)	Vel (ft/s)	Vel head (ft)	EGL elev (ft)	Sf (%)	(E)	Invert elev (ft)	HGL elev (ft)	Depth (ft)	Area (sqft)	Vel (ft/s)	Vel head (ff)	EGL elev (ft)	Sf (%)	Ave Sf (%)	Enrgy loss (ft)	(X)	(ff)
-	24	13.00	100.00	102.00	2.00	3.14	4.14	0.27	102.27	0.331	15.0	100.08	102.05	1.97	3.13	4.15	0.27	102.31	0.298	0.314	0.047	0.85	0.23
2	24	13.00	100.28	102.28	2.00*	3.14	41.4	0.27	102.55	0.331	110	100.83	102.59	1.76	2.92	4.45	0.31	102.89	0.298	0.314	0.346	1.00	0.31
								· · · · · · · · · · · · · · · · · · ·														·	
																<u>₹</u>							
															,		·						
										. 1													
						:			<u>.</u>		-							· · · · · · · · · · · · · · · · · · ·					
Projec	Project File: New.stm	lew.stm					1-0-1	File: Ne	I-D-F File: New.IDF.IDF	ш				P P	Total number of lines: 2	er of line	9S: 2		Run	Date: 1	Run Date: 11-28-2005	25	
NOTE	S: Initial	tailwate	NOTES: Initial tailwater elevation =	102	(ft), * Crc	deb uwc	* Crown depth assumed.,		** Critical depth assumed.	pth ass	nmed.	**											

Line No.	Line ID	Flow rate (cfs)	Line size (in)	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line slope (%)	HGL down (ft)	HGL up (ft)	Minor loss (ft)	Dns line No.
1	D13 - MH4	13.00	24 c	15.0	100.00	100.08	0.533	102.00	102.05	0.23	End
2	MH4 - D11	13.00	24 c	110.0	100.28	100.83	0.500	102.28	102.59	0.31	1
								• ·			
-											
							·				
T DOOR										The second secon	
				·							

SYSTEM 3

Hydraflow Plan View

Line No.	Line ID	Flow rate (cfs)	Line size (in)	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line slope (%)	HGL down (ft)	HGL up (ft)	Minor loss (ft)	Dns line No.
1	D16- D14	17.00	24 c	34.0	100.00	100.17	0.500	102.00	102.17	0.39	End
2	MH4- MH5	17.00	24 c	261.0	100.47	101.78	0.502	102.56*	104.03*	0.46	1
3	MH5-D14	17.00	24 c	372.0	102.08	103.94	0.500	104.49*	106.59*	0.39	2
							`				
Proj	ect File: New.stm		I-D-F File	e: New.ID	F.IDF	Total No	o. Lines: (3	Run Date:	11-28-2	2005

NOTES: c = circular; e = elliptical; b = box; Return period = 100 Yrs.; *Indicates surcharge condition.

Hydraflow Hydraulic Grade Line Computations

													-											ſ
Line	Size	ø				Downstream	am				Len				Upstream	eam				Check	€,	JL	Minor	<u> </u>
	(in)	(cfs)	Invert elev (ft)	HGL elev (ft)	Depth (ft)	Area (sqft)	Vef (ft/s)	Vel head (ft)	EGL elev (ft)	Sf (%)	£	Invert elev (ft)	HGL elev (ft)	Depth (ft)	Area (sqft)	Vel (ft/s)	Vel head (ft)	EGL elev (ff)	Sf (%)	Ave Sf (%)	Enrgy loss (ft)			
-	24	17.00	100.00	102.00	2.00	3.14	5.41	0.46	102.46	0.565	34.0	100.17	102.17	2.00	3.14	5.41	0.46	102.62	0.555	0.560	0.190	0.85	0.39	
2	24	17.00	100.47	102.56	2.00	3.14	5.41	0.46	103.01	0.565	261	101.78	104.03	2.00	3.14	5.41	0.46	104.49	0.565	0.565	1.475	1.00	0.46	
ო	24	17.00	102.08	104.49	2.00	3.14	5.41	0.46	104.94	0.565	372	103.94	106.59	2.00	3.14	5.41	0.46	107.04	0.565	0.565	2.102	0.85	0.39	
									· .	-														
																			-		-			
						-																		
												-												
								-																
4																								
						-									; 	.								
						······																		
														·										
							-			.*					-									
													<u> </u>		٠.						-			
						-							• .											-
																			-					
									*															
Proje	Project File: New.stm	lew.stm					I-D-F	File: N	I-D-F File: New.IDF.IDF)F				욘	tal num	Total number of lines: 3	1es: 3		Run	Run Date: 11-28-2005	11-28-20	05		T
NOTE	S: Initial	tailwater	NOTES: Initial tailwater elevation = 102 (ft) * Crown denth assumed ** Critical denth assumed	= 102 (4	* C	ueb awa	th assum	** ben	Critical	lenth as	pemis													Т
			10100	12.	,	1	8990			יבלהוו מפ	SOLIDO.	į												

HYDRAULIC STRUCTURES (EXISTING CONDITIONS)

TABLE 3 (cont.)
Existing Culvert Description and Split Flow Conditions for Q100

	. 2												- 20 Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	1101 ef3					1017	1555 2656 cfe									
	Recurrence	Interval	2 yr	0 yr	2 yr	. 1	0 yr	. L	1		2 yr				<u>.</u> 1	,1	0 24	0 yr	0 yr 2	26	50	0 VI	0 yr	0 مع	. 0	0 yr	2 yr	2 yr	2 vr
	Hydraulic	Capacity***	l	150	300	1	400	140	1	•	1000	100	300	000		I	009	400	400		380	450	450	220	570	650	800	350	400
0 cfs)	Over-	flow**	1430	1350	715	1	253	303	1		385	1493	701	1002	1288	ı	473	1367	2101		5135	3333	1840	2030	2082	260	75	908	173
Existing Conditions (Q100 cfs)	Break	Out	404	2565	715	1474	3362	959	1933		3387	962	2470	2548	1847	3758	2905	1078	3014	A second	5123	1195	1952	1220	548	1752	2398	250	812
Existing		Structure	1	190	355	1	450	156	1		1090	145	400	3461	? 1	i	029	545	555		482	605	265	280	880	760	865	432	545
•	WSE	(u)	2158.35	2157.0	2155.45	1	2148.38	2147.54	1		2144.44	2143.37	2142.64	2141 02	2140.42	1	2138.91	2137.88	2139.02		2132.88	2129.79	2129.81	2125.26	2123.40	2123.44	2115.61	2112.66	2111.44
	Q100	(cls)	1	4105	. 1540	1474	4065	1418	1933		. 4862	2434	3571	CBC 4887		3758	4048	2990	2,000		10738	9699	4357	3830	3510	3072	3338	1488	1530
		Description	Roadway Interchange	1-9'X 2'	3-5.5' X 3.5'	1	2 - 8' X 2' "	1 - 6' X 4' "	1 -		2 - 14' X 4'	2 - 4' X 2' "	2-6'x 3' "	2 - 13' Y 4'		ł	2-14' X 2'	8, X	2-8'X3' "		1 - 9' X 4' "	3-6'X3' "	2-8'X 3' "	2-8'X 3'	3 - 8' X 4' "	3-9'X 4' "	2-13'x 3' "	2 - 8'x 3' "	2-8'x 4' "
٠		Station	4915+25	SPRR	WBFR	1-10	SPRR	WBFR	I-10		SPRR	WBFR	1-10	ands	WBFR	I-10	SPRR	WBFR	1-10		SPRR	WBFR	I-10	SPRR	WBFR	1-10	SPRR	WBFR	1-10
		Basin/Structure	o Rd.	4905+00			4892 + 30	•			4880+82			4875+20			4868+72			CAÑADA AGUA	4848+12			4833+00			4813+00		
		Basin/	Cortaro Rd.	NRS			NR4				NR3			VR2			NRI			CAÑAL	CA8			CA7			CA6		

RESULTS

Entrance Type: SQUARE HEADWALL (RCP)

Discharge is 26.00 cfs

1 X 24 " RCP X 50 FT. LONG Manning's 'n' 0.012

Inlet Control HW/D 2.02 Inlet Control HW 4.04

Ke 0.50

H 2.16

Critical Depth 1.79 1.89 Dc+D/2Tailwater 1.25 HΟ 1.89 L*SO 0.15 3.90 Outlet HW

INLET CONTROL GOVERNS HW = 4.04Outlet Velocity 8.28 fps

RESULTS

Entrance Type: SQUARE HEADWALL (RCP)

Discharge is 26.00 cfs

1 X 24 " RCP X 50 FT. LONG

Manning's 'n' 0.012

Inlet Control HW/D 2.02 Inlet Control HW 4.04

Ke 0.50 2.16

Critical Depth 1.79

Dc+D/2Tailwater 1.25 HO 1.89

L*S0 0.15 Outlet HW 3.90

INLET CONTROL GOVERNS HW= 4.04 Outlet Velocity 8.28 fps

Assume 26 cts
Enters from setsting
24° RCP Gt NRY.